A New Robust Resonance Based Wavelet Decomposition Cepstral Features for Phoneme Recoszgnition

Ihsan Al-Hassani, O. Al-Dakkak, Abdlnaser Assami
{"title":"A New Robust Resonance Based Wavelet Decomposition Cepstral Features for Phoneme Recoszgnition","authors":"Ihsan Al-Hassani, O. Al-Dakkak, Abdlnaser Assami","doi":"10.36478/rjasci.2019.250.257","DOIUrl":null,"url":null,"abstract":"Robust Automatic Speech Recognition (ASR) is a challenging task that has been an active research subject for the last 20 years. And still results are very modest in the highly noisy environments. In this study, we propose a new speech parameterization method based on concatenating two wavelet packet decompositions, one decomposition using low Q-factor wavelet and another with high Q-factor wavelet, to extract speech features suitable for ASR task in noisy conditions. Experiments on TIMIT dataset for phonemes recognition show that the proposed wavelet-based features outperform MFCC in all noisy conditions.","PeriodicalId":21010,"journal":{"name":"Research Journal of Applied Sciences, Engineering and Technology","volume":"1 1","pages":"250-257"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Journal of Applied Sciences, Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36478/rjasci.2019.250.257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Robust Automatic Speech Recognition (ASR) is a challenging task that has been an active research subject for the last 20 years. And still results are very modest in the highly noisy environments. In this study, we propose a new speech parameterization method based on concatenating two wavelet packet decompositions, one decomposition using low Q-factor wavelet and another with high Q-factor wavelet, to extract speech features suitable for ASR task in noisy conditions. Experiments on TIMIT dataset for phonemes recognition show that the proposed wavelet-based features outperform MFCC in all noisy conditions.
一种新的基于鲁棒共振的小波分解倒谱特征用于音素识别
鲁棒自动语音识别(ASR)是一项具有挑战性的研究课题,近20年来一直是研究热点。在高噪声环境下,结果仍然是非常有限的。在本研究中,我们提出了一种新的基于串联两个小波包分解的语音参数化方法,一个是低q因子小波分解,另一个是高q因子小波分解,以提取适合噪声条件下ASR任务的语音特征。在TIMIT数据集上进行的音素识别实验表明,所提出的基于小波的特征在所有噪声条件下都优于MFCC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信