Effect of Hydrostatic Pressure and Temperature on Quantum Confinement of AlGaN/GaN HEMTs

Q3 Multidisciplinary
R. Yahyazadeh, Z. Hashempour
{"title":"Effect of Hydrostatic Pressure and Temperature on Quantum Confinement of AlGaN/GaN HEMTs","authors":"R. Yahyazadeh, Z. Hashempour","doi":"10.30880/JST.2021.13.01.001","DOIUrl":null,"url":null,"abstract":"In this paper, an analytical model for quantum confinement electron density in two-dimensional quantum well, has been investigated. In order to obtain the exact AlGaN/GaN HEMTs parameters such as electron density, the wave function, band gap, polarization charge, effective mass and dielectric constant, the hydrostatic pressure and temperature effects are taken into account. It has been found that the electron density decreases with increasing temperature and increases with increasing hydrostatic pressure. With increasing hydrostatic pressure, the effective mass decreases and the quantum confinement electrons are increased in the quantum well. Also with increasing hydrostatic pressure, the height of wave functions increase and decreases electron wave functions to penetrate the quantum barrier but increasing the temperature behaves the opposite of increasing the pressure. However, with increasing temperature, the effective mass is increased and the quantum confinement electrons are reduced. The calculated results for electron density are in good agreement with existing experimental data.","PeriodicalId":21913,"journal":{"name":"Songklanakarin Journal of Science and Technology","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Songklanakarin Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30880/JST.2021.13.01.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, an analytical model for quantum confinement electron density in two-dimensional quantum well, has been investigated. In order to obtain the exact AlGaN/GaN HEMTs parameters such as electron density, the wave function, band gap, polarization charge, effective mass and dielectric constant, the hydrostatic pressure and temperature effects are taken into account. It has been found that the electron density decreases with increasing temperature and increases with increasing hydrostatic pressure. With increasing hydrostatic pressure, the effective mass decreases and the quantum confinement electrons are increased in the quantum well. Also with increasing hydrostatic pressure, the height of wave functions increase and decreases electron wave functions to penetrate the quantum barrier but increasing the temperature behaves the opposite of increasing the pressure. However, with increasing temperature, the effective mass is increased and the quantum confinement electrons are reduced. The calculated results for electron density are in good agreement with existing experimental data.
静水压力和温度对AlGaN/GaN HEMTs量子约束的影响
本文研究了二维量子阱中量子约束电子密度的解析模型。为了得到准确的AlGaN/GaN HEMTs参数,如电子密度、波函数、带隙、极化电荷、有效质量和介电常数,考虑了静水压力和温度效应。电子密度随温度的升高而减小,随静水压力的增大而增大。随着静水压力的增大,有效质量减小,量子阱中的量子约束电子增加。随着静水压力的增加,波函数的高度增加,电子波函数穿透量子势垒的高度降低,但温度的增加与压力的增加相反。然而,随着温度的升高,有效质量增加,量子约束电子减少。电子密度的计算结果与已有的实验数据吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Songklanakarin Journal of Science and Technology
Songklanakarin Journal of Science and Technology Multidisciplinary-Multidisciplinary
CiteScore
1.10
自引率
0.00%
发文量
0
审稿时长
25 weeks
期刊介绍: Songklanakarin Journal of Science and Technology (SJST) aims to provide an interdisciplinary platform for the dissemination of current knowledge and advances in science and technology. Areas covered include Agricultural and Biological Sciences, Biotechnology and Agro-Industry, Chemistry and Pharmaceutical Sciences, Engineering and Industrial Research, Environmental and Natural Resources, and Physical Sciences and Mathematics. Songklanakarin Journal of Science and Technology publishes original research work, either as full length articles or as short communications, technical articles, and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信