RNA G-quadruplexes and their potential regulatory roles in translation

Jingwen Song, J. Perreault, I. Topisirovic, S. Richard
{"title":"RNA G-quadruplexes and their potential regulatory roles in translation","authors":"Jingwen Song, J. Perreault, I. Topisirovic, S. Richard","doi":"10.1080/21690731.2016.1244031","DOIUrl":null,"url":null,"abstract":"ABSTRACT DNA guanine (G)-rich 4-stranded helical nucleic acid structures called G-quadruplexes (G4), have been extensively studied during the last decades. However, emerging evidence reveals that 5′- and 3′-untranslated regions (5′- and 3′-UTRs) as well as open reading frames (ORFs) contain putative RNA G-quadruplexes. These stable secondary structures play key roles in telomere homeostasis and RNA metabolism including pre-mRNA splicing, polyadenylation, mRNA targeting and translation. Interestingly, multiple RNA binding proteins such as nucleolin, FMRP, DHX36, and Aven were identified to bind RNA G-quadruplexes. Moreover, accumulating reports suggest that RNA G-quadruplexes regulate translation in cap-dependent and -independent manner. Herein, we discuss potential roles of RNA G-quadruplexes and associated trans-acting factors in the regulation of mRNA translation.","PeriodicalId":90376,"journal":{"name":"Translation (Austin, Tex.)","volume":"26 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"110","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translation (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21690731.2016.1244031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 110

Abstract

ABSTRACT DNA guanine (G)-rich 4-stranded helical nucleic acid structures called G-quadruplexes (G4), have been extensively studied during the last decades. However, emerging evidence reveals that 5′- and 3′-untranslated regions (5′- and 3′-UTRs) as well as open reading frames (ORFs) contain putative RNA G-quadruplexes. These stable secondary structures play key roles in telomere homeostasis and RNA metabolism including pre-mRNA splicing, polyadenylation, mRNA targeting and translation. Interestingly, multiple RNA binding proteins such as nucleolin, FMRP, DHX36, and Aven were identified to bind RNA G-quadruplexes. Moreover, accumulating reports suggest that RNA G-quadruplexes regulate translation in cap-dependent and -independent manner. Herein, we discuss potential roles of RNA G-quadruplexes and associated trans-acting factors in the regulation of mRNA translation.
RNA g -四联体及其在翻译中的潜在调控作用
DNA鸟嘌呤(G)丰富的4链螺旋核酸结构被称为G-四plex (G4),在过去的几十年里被广泛研究。然而,新出现的证据表明,5 ' -和3 ' -非翻译区(5 ' -和3 ' - utr)以及开放阅读框(orf)含有假定的RNA g -四联体。这些稳定的二级结构在端粒稳态和RNA代谢中发挥关键作用,包括mRNA前剪接、聚腺苷化、mRNA靶向和翻译。有趣的是,多种RNA结合蛋白如核仁蛋白、FMRP、DHX36和Aven被鉴定为与RNA g -四联体结合。此外,越来越多的报道表明,RNA g -四联体以帽依赖和不依赖的方式调节翻译。在此,我们讨论了RNA g -四联体和相关反式作用因子在mRNA翻译调控中的潜在作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信