Kamirul, E. A. Anggari, Dicka Ariptian, Rahayu, A. Herawan, M. Soedjarwo, Chusnul Tri, Judianto
{"title":"Superpixel-Based Stripe Noise Removal for Satellite Imageries","authors":"Kamirul, E. A. Anggari, Dicka Ariptian, Rahayu, A. Herawan, M. Soedjarwo, Chusnul Tri, Judianto","doi":"10.22146/jnteti.v12i2.7443","DOIUrl":null,"url":null,"abstract":"This work introduces a novel noise removal algorithm for satellite imageries based on superpixel segmentation followed by statistics-based filtering. The algorithm worked in three main steps. First, the noisy input image was divided into subregions by employing simple linear iterative clustering (SLIC)-based superpixel segmentation. Then, the statistical property of each subregion was calculated, including their standard deviations and maximum values. Last, an adaptive statistics-based stripe noise removal was performed for each subregion by constructing adaptive filter sizes according to calculated properties. The algorithm was tested using real satellite imageries taken by the LAPAN-A2 and LAPAN-A3 satellites. Its performance was then compared to three existing methods in terms of image quality and computation speed. Extensive experiments on two datasets of 3-channel images captured by the LAPAN-A2 satellite showed that the algorithm was capable of reducing the stripe pattern as measured using the peak-signal-to-noise-ratio (PSNR) metric without introducing additional artifacts, which commonly appeared on over-corrected regions. Moreover, compared to existing methods, the proposed algorithm ran 42 to 103 times faster and provided better image quality by 2.46%, measured using the structural similarity metric (SSIM). The code of this work and the datasets used for the testing are publicly available on www.github.com/dancingpixel/SPSNR.","PeriodicalId":31477,"journal":{"name":"Jurnal Nasional Teknik Elektro dan Teknologi Informasi","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro dan Teknologi Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/jnteti.v12i2.7443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work introduces a novel noise removal algorithm for satellite imageries based on superpixel segmentation followed by statistics-based filtering. The algorithm worked in three main steps. First, the noisy input image was divided into subregions by employing simple linear iterative clustering (SLIC)-based superpixel segmentation. Then, the statistical property of each subregion was calculated, including their standard deviations and maximum values. Last, an adaptive statistics-based stripe noise removal was performed for each subregion by constructing adaptive filter sizes according to calculated properties. The algorithm was tested using real satellite imageries taken by the LAPAN-A2 and LAPAN-A3 satellites. Its performance was then compared to three existing methods in terms of image quality and computation speed. Extensive experiments on two datasets of 3-channel images captured by the LAPAN-A2 satellite showed that the algorithm was capable of reducing the stripe pattern as measured using the peak-signal-to-noise-ratio (PSNR) metric without introducing additional artifacts, which commonly appeared on over-corrected regions. Moreover, compared to existing methods, the proposed algorithm ran 42 to 103 times faster and provided better image quality by 2.46%, measured using the structural similarity metric (SSIM). The code of this work and the datasets used for the testing are publicly available on www.github.com/dancingpixel/SPSNR.