Asymptotic behaviour of singular solution of the fast diffusion equation in the punctured euclidean space

K. M. Hui, Jinwan Park
{"title":"Asymptotic behaviour of singular solution of the fast diffusion equation in the punctured euclidean space","authors":"K. M. Hui, Jinwan Park","doi":"10.3934/DCDS.2021085","DOIUrl":null,"url":null,"abstract":"We study the existence, uniqueness, and asymptotic behaviour of the singular solution of the fast diffusion equation, which blows up at the origin for all time. For $n\\ge 3$, $0<m<\\frac{n-2}{n}$, $\\beta<0$ and $\\alpha=\\frac{2\\beta}{1-m}$, we prove the existence and asymptotic behaviour of singular eternal self-similar solution of the fast diffusion equation. As a consequence, we prove the existence and uniqueness of solution of Cauchy problem for the fast diffusion equation. \r\nFor $n=3, 4$ and $\\frac{n-2}{n+2}\\le m 0$. Furthermore, for the radially symmetric initial value $u_0$, $3 \\le n < 8$, $1- \\sqrt{\\frac{2}{n}} \\le m \\le \\min \\left \\{\\frac{2(n-2)}{3n}, \\frac{n-2}{n+2}\\right \\}$, we also have the asymptotic large time behaviour.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"27 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/DCDS.2021085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the existence, uniqueness, and asymptotic behaviour of the singular solution of the fast diffusion equation, which blows up at the origin for all time. For $n\ge 3$, $0
刺穿欧几里得空间中快速扩散方程奇异解的渐近行为
研究了在原点时刻爆炸的快速扩散方程奇异解的存在性、唯一性和渐近性。对于$n\ge 3$, $0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信