Linking News across Multiple Streams for Timeliness Analysis

I. Mele, Seyed Ali Bahrainian, F. Crestani
{"title":"Linking News across Multiple Streams for Timeliness Analysis","authors":"I. Mele, Seyed Ali Bahrainian, F. Crestani","doi":"10.1145/3132847.3132988","DOIUrl":null,"url":null,"abstract":"Linking multiple news streams based on the reported events and analyzing the streams' temporal publishing patterns are two very important tasks for information analysis, discovering newsworthy stories, studying the event evolution, and detecting untrustworthy sources of information. In this paper, we propose techniques for cross-linking news streams based on the reported events with the purpose of analyzing the temporal dependencies among streams. Our research tackles two main issues: (1) how news streams are connected as reporting an event or the evolution of the same event and (2) how timely the newswires report related events using different publishing platforms. Our approach is based on dynamic topic modeling for detecting and tracking events over the timeline and on clustering news according to the events. We leverage the event-based clustering to link news across different streams and present two scoring functions for ranking the streams based on their timeliness in publishing news about a specific event.","PeriodicalId":20449,"journal":{"name":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132847.3132988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Linking multiple news streams based on the reported events and analyzing the streams' temporal publishing patterns are two very important tasks for information analysis, discovering newsworthy stories, studying the event evolution, and detecting untrustworthy sources of information. In this paper, we propose techniques for cross-linking news streams based on the reported events with the purpose of analyzing the temporal dependencies among streams. Our research tackles two main issues: (1) how news streams are connected as reporting an event or the evolution of the same event and (2) how timely the newswires report related events using different publishing platforms. Our approach is based on dynamic topic modeling for detecting and tracking events over the timeline and on clustering news according to the events. We leverage the event-based clustering to link news across different streams and present two scoring functions for ranking the streams based on their timeliness in publishing news about a specific event.
链接新闻跨多个流的时效性分析
基于事件报道链接多个信息流,分析信息流的时间发布模式,是信息分析、发现有新闻价值的故事、研究事件演变和发现不可信信息源的重要任务。在本文中,我们提出了基于报道事件的新闻流交叉链接技术,目的是分析流之间的时间依赖性。我们的研究解决了两个主要问题:(1)如何将新闻流与报道事件或同一事件的演变联系起来;(2)新闻通讯社使用不同的发布平台报道相关事件的及时性。我们的方法是基于动态主题建模来检测和跟踪时间轴上的事件,并根据事件聚类新闻。我们利用基于事件的聚类来链接跨不同流的新闻,并提供两个评分功能,根据发布特定事件新闻的时效性对流进行排名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信