{"title":"Object-Based Scene Classification Modeled by Hidden Markov Models Architecture","authors":"Benrais Lamine, N. Baha","doi":"10.4018/ijcini.20211001.oa6","DOIUrl":null,"url":null,"abstract":"Multiclass classification problems such as document classification, medical diagnosis or scene classification are very challenging to address due to similarities between mutual classes. The use of reliable tools is necessary to get good classification results. This paper addresses the scene classification problem using objects as attributes. The process of classification is modeled by a famous mathematical tool: The Hidden Markov Models. We introduce suitable relations that scale the parameters of the Hidden Markov Model into variables of scene classification. The construction of Hidden Markov Chains is supported with weight measures and sorting functions. Lastly, inference algorithms extract most suitable scene categories from the Discrete Markov Chain. A parallelism approach constructs several Discrete Markov Chains in order to improve the accuracy of the classification process. We provide numerous tests on different datasets and compare classification accuracies with some state of the art methods. The proposed approach distinguishes itself by outperforming the other.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":"44 1","pages":"1-30"},"PeriodicalIF":0.6000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Informatics and Natural Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.20211001.oa6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Multiclass classification problems such as document classification, medical diagnosis or scene classification are very challenging to address due to similarities between mutual classes. The use of reliable tools is necessary to get good classification results. This paper addresses the scene classification problem using objects as attributes. The process of classification is modeled by a famous mathematical tool: The Hidden Markov Models. We introduce suitable relations that scale the parameters of the Hidden Markov Model into variables of scene classification. The construction of Hidden Markov Chains is supported with weight measures and sorting functions. Lastly, inference algorithms extract most suitable scene categories from the Discrete Markov Chain. A parallelism approach constructs several Discrete Markov Chains in order to improve the accuracy of the classification process. We provide numerous tests on different datasets and compare classification accuracies with some state of the art methods. The proposed approach distinguishes itself by outperforming the other.
期刊介绍:
The International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) encourages submissions that transcends disciplinary boundaries, and is devoted to rapid publication of high quality papers. The themes of IJCINI are natural intelligence, autonomic computing, and neuroinformatics. IJCINI is expected to provide the first forum and platform in the world for researchers, practitioners, and graduate students to investigate cognitive mechanisms and processes of human information processing, and to stimulate the transdisciplinary effort on cognitive informatics and natural intelligent research and engineering applications.