Implementation of simplified normalized cut graph partitioning algorithm on FPGA for image segmentation

Shumit Saha, Kazi Hasan Uddin, M. Islam, Md Jahiruzzaman, A. B. M. Awolad Hossain
{"title":"Implementation of simplified normalized cut graph partitioning algorithm on FPGA for image segmentation","authors":"Shumit Saha, Kazi Hasan Uddin, M. Islam, Md Jahiruzzaman, A. B. M. Awolad Hossain","doi":"10.1109/SKIMA.2014.7083513","DOIUrl":null,"url":null,"abstract":"Normalized cut based image segmentation has a variety of applications in the area of image compression, medical imaging, mapping and measurements. But, the computational complexity of conventional normalized cut algorithm based on generalized eigenvalue problem is high. In this study, we proposed a simplified normalized cut algorithm using graph partitioning method for image segmentation. The computational cost of this simplified method are relatively low and hence, it can be implemented on real time embedded system applications. We have implemented an FPGA based image segmentation system using the simplified normalized cut algorithm and tested it for malarial parasites detection. Verilog Hardware Description Language (Verilog HDL) is used to develop the system and implemented on FPGA Spartan-6 targeted device xc6slx16- 2csg324. The Simple-As-Possible (SAP) computer architecture is used to design the system. We think the proposed architecture can be useful for real time image segmentation.","PeriodicalId":22294,"journal":{"name":"The 8th International Conference on Software, Knowledge, Information Management and Applications (SKIMA 2014)","volume":"28 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 8th International Conference on Software, Knowledge, Information Management and Applications (SKIMA 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKIMA.2014.7083513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Normalized cut based image segmentation has a variety of applications in the area of image compression, medical imaging, mapping and measurements. But, the computational complexity of conventional normalized cut algorithm based on generalized eigenvalue problem is high. In this study, we proposed a simplified normalized cut algorithm using graph partitioning method for image segmentation. The computational cost of this simplified method are relatively low and hence, it can be implemented on real time embedded system applications. We have implemented an FPGA based image segmentation system using the simplified normalized cut algorithm and tested it for malarial parasites detection. Verilog Hardware Description Language (Verilog HDL) is used to develop the system and implemented on FPGA Spartan-6 targeted device xc6slx16- 2csg324. The Simple-As-Possible (SAP) computer architecture is used to design the system. We think the proposed architecture can be useful for real time image segmentation.
简化归一化切图分割算法在FPGA上的实现
基于归一化切割的图像分割在图像压缩、医学成像、制图和测量等领域有着广泛的应用。但传统的基于广义特征值问题的归一化切割算法计算量大。在这项研究中,我们提出了一种简化的归一化切割算法,该算法使用图划分方法进行图像分割。这种简化方法的计算成本相对较低,因此可以在实时嵌入式系统中实现。我们利用简化归一化切割算法实现了基于FPGA的图像分割系统,并对其进行了疟疾寄生虫检测测试。系统采用Verilog硬件描述语言(Verilog HDL)进行开发,并在FPGA Spartan-6目标器件xc6slx16- 2csg324上实现。系统的设计采用了SAP (Simple-As-Possible)计算机体系结构。我们认为所提出的架构可以用于实时图像分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信