{"title":"Multiphysics Modeling of Magnetic Scaffolds for Biomedical Applications","authors":"M. B. Lodi, A. Fanti","doi":"10.1109/NAP51885.2021.9568562","DOIUrl":null,"url":null,"abstract":"Magneto-responsive biomaterials can play a key role in several biomedical applications, from therapeutic to diagnostic. Despite the several efforts for synthesizing and characterizing bioceramics doped with magnetic ions or polymers loaded with magnetic nanoparticles, there is lack of mathematical and numerical models capable of filling the gap between nanomaterial science and engineering. This work reviews and propose numerical, multiphysics models for studying the use of magnetic scaffolds for the hyperthermia treatment of bone tumors and for magnetically targeted drug delivery.","PeriodicalId":6735,"journal":{"name":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","volume":"10 2 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAP51885.2021.9568562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Magneto-responsive biomaterials can play a key role in several biomedical applications, from therapeutic to diagnostic. Despite the several efforts for synthesizing and characterizing bioceramics doped with magnetic ions or polymers loaded with magnetic nanoparticles, there is lack of mathematical and numerical models capable of filling the gap between nanomaterial science and engineering. This work reviews and propose numerical, multiphysics models for studying the use of magnetic scaffolds for the hyperthermia treatment of bone tumors and for magnetically targeted drug delivery.