Wallace A. Pinheiro, G. Xexéo, J. Souza, A. B. Pinheiro
{"title":"Data Discovery Over Time Series From Star Schemas Based on Association, Correlation, and Causality","authors":"Wallace A. Pinheiro, G. Xexéo, J. Souza, A. B. Pinheiro","doi":"10.4018/ijdwm.2020100106","DOIUrl":null,"url":null,"abstract":"This work proposes a methodology applied to repositories modeled using star schemas, such as data marts, to discover relevant time series relations. This paper applies a set of measures related to association, correlation, and causality to create connections among data. In this context, the research proposes a new causality function based on peaks and values that relate coherently time series. To evaluate the approach, the authors use a set of experiments exploring time series about a particular neglected disease that affects several Brazilian cities called American Tegumentary Leishmaniasis and time series about the climate of some cities in Brazil. The authors populate data marts with these data, and the proposed methodology has generated a set of relations linking the notifications of this disease to the variation of temperature and pluviometry.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.2020100106","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
This work proposes a methodology applied to repositories modeled using star schemas, such as data marts, to discover relevant time series relations. This paper applies a set of measures related to association, correlation, and causality to create connections among data. In this context, the research proposes a new causality function based on peaks and values that relate coherently time series. To evaluate the approach, the authors use a set of experiments exploring time series about a particular neglected disease that affects several Brazilian cities called American Tegumentary Leishmaniasis and time series about the climate of some cities in Brazil. The authors populate data marts with these data, and the proposed methodology has generated a set of relations linking the notifications of this disease to the variation of temperature and pluviometry.
期刊介绍:
The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving