On the empirical spectral distribution for certain models related to sample covariance matrices with different correlations

Pub Date : 2021-03-04 DOI:10.1142/s2010326322500307
Alicja Dembczak-Kołodziejczyk, A. Lytova
{"title":"On the empirical spectral distribution for certain models related to sample covariance matrices with different correlations","authors":"Alicja Dembczak-Kołodziejczyk, A. Lytova","doi":"10.1142/s2010326322500307","DOIUrl":null,"url":null,"abstract":"Given [Formula: see text], we study two classes of large random matrices of the form [Formula: see text] where for every [Formula: see text], [Formula: see text] are iid copies of a random variable [Formula: see text], [Formula: see text], [Formula: see text] are two (not necessarily independent) sets of independent random vectors having different covariance matrices and generating well concentrated bilinear forms. We consider two main asymptotic regimes as [Formula: see text]: a standard one, where [Formula: see text], and a slightly modified one, where [Formula: see text] and [Formula: see text] while [Formula: see text] for some [Formula: see text]. Assuming that vectors [Formula: see text] and [Formula: see text] are normalized and isotropic “in average”, we prove the convergence in probability of the empirical spectral distributions of [Formula: see text] and [Formula: see text] to a version of the Marchenko–Pastur law and the so-called effective medium spectral distribution, correspondingly. In particular, choosing normalized Rademacher random variables as [Formula: see text], in the modified regime one can get a shifted semicircle and semicircle laws. We also apply our results to the certain classes of matrices having block structures, which were studied in [G. M. Cicuta, J. Krausser, R. Milkus and A. Zaccone, Unifying model for random matrix theory in arbitrary space dimensions, Phys. Rev. E 97(3) (2018) 032113, MR3789138; M. Pernici and G. M. Cicuta, Proof of a conjecture on the infinite dimension limit of a unifying model for random matrix theory, J. Stat. Phys. 175(2) (2019) 384–401, MR3968860].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326322500307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Given [Formula: see text], we study two classes of large random matrices of the form [Formula: see text] where for every [Formula: see text], [Formula: see text] are iid copies of a random variable [Formula: see text], [Formula: see text], [Formula: see text] are two (not necessarily independent) sets of independent random vectors having different covariance matrices and generating well concentrated bilinear forms. We consider two main asymptotic regimes as [Formula: see text]: a standard one, where [Formula: see text], and a slightly modified one, where [Formula: see text] and [Formula: see text] while [Formula: see text] for some [Formula: see text]. Assuming that vectors [Formula: see text] and [Formula: see text] are normalized and isotropic “in average”, we prove the convergence in probability of the empirical spectral distributions of [Formula: see text] and [Formula: see text] to a version of the Marchenko–Pastur law and the so-called effective medium spectral distribution, correspondingly. In particular, choosing normalized Rademacher random variables as [Formula: see text], in the modified regime one can get a shifted semicircle and semicircle laws. We also apply our results to the certain classes of matrices having block structures, which were studied in [G. M. Cicuta, J. Krausser, R. Milkus and A. Zaccone, Unifying model for random matrix theory in arbitrary space dimensions, Phys. Rev. E 97(3) (2018) 032113, MR3789138; M. Pernici and G. M. Cicuta, Proof of a conjecture on the infinite dimension limit of a unifying model for random matrix theory, J. Stat. Phys. 175(2) (2019) 384–401, MR3968860].
分享
查看原文
不同相关性的样本协方差矩阵相关模型的经验谱分布
给定[公式:见文],我们研究两类形式为[公式:见文]的大型随机矩阵,其中每个[公式:见文],[公式:见文]是一个随机变量[公式:见文],[公式:见文],[公式:见文]的iid副本,是两个(不一定是独立的)独立随机向量集合,具有不同的协方差矩阵,并产生很集中的双线性形式。我们考虑两种主要的渐近机制[公式:见文]:一个标准的,其中[公式:见文],和一个稍微修改的,其中[公式:见文]和[公式:见文],而[公式:见文]的一些[公式:见文]。假设向量[公式:见文]和[公式:见文]是归一化且“平均”各向同性的,我们相应地证明了[公式:见文]和[公式:见文]的经验光谱分布在概率上收敛于Marchenko-Pastur定律的一个版本和所谓的有效介质光谱分布。特别地,选取归一化Rademacher随机变量为[公式:见文],在修正的制度下可以得到移位的半圆定律和半圆定律。我们还将我们的结果应用于[G]中研究的具有块结构的某类矩阵。M. Cicuta, J. Krausser, R. Milkus和A. Zaccone,任意空间维度随机矩阵理论的统一模型,物理学报。Rev. E 97(3) (2018) 032113, MR3789138;M. Pernici和G. M. Cicuta,随机矩阵理论统一模型的无限维极限猜想的证明[j].物理学报,17 (2)(2019)384-401,MR3968860。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信