Exponential stabilisation for nonlinear PDE systems via sampled-data static output feedback control

Q2 Engineering
Dongxiao Hu, Xiaona Song, Mi Wang, Junwei Lu
{"title":"Exponential stabilisation for nonlinear PDE systems via sampled-data static output feedback control","authors":"Dongxiao Hu, Xiaona Song, Mi Wang, Junwei Lu","doi":"10.1080/23335777.2020.1837249","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper focuses on the problem of exponential stabilisation for nonlinear partial differential equation (PDE) systems by designing sampled-data static output feedback controller. First, the nonlinear PDE systems are reconstructed by Takagi-Sugeno (T-S) fuzzy model. Subsequently, the closed-loop systems are obtained by introducing sampled-data static output feedback fuzzy controller. Then, stability conditions of the closed-loop system are obtained based on Lyapunov function approach, which can guarantee that the considered systems are exponential stabilisation and satisfy dissipative performance. Finally, the effectiveness of the developed method is demonstrated by a simulation study.","PeriodicalId":37058,"journal":{"name":"Cyber-Physical Systems","volume":"436 1","pages":"179 - 196"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23335777.2020.1837249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT This paper focuses on the problem of exponential stabilisation for nonlinear partial differential equation (PDE) systems by designing sampled-data static output feedback controller. First, the nonlinear PDE systems are reconstructed by Takagi-Sugeno (T-S) fuzzy model. Subsequently, the closed-loop systems are obtained by introducing sampled-data static output feedback fuzzy controller. Then, stability conditions of the closed-loop system are obtained based on Lyapunov function approach, which can guarantee that the considered systems are exponential stabilisation and satisfy dissipative performance. Finally, the effectiveness of the developed method is demonstrated by a simulation study.
基于采样数据静态输出反馈控制的非线性PDE系统指数稳定
通过设计采样数据静态输出反馈控制器,研究非线性偏微分方程(PDE)系统的指数镇定问题。首先,利用Takagi-Sugeno (T-S)模糊模型对非线性PDE系统进行重构。随后,通过引入采样数据静态输出反馈模糊控制器得到闭环系统。然后,基于Lyapunov函数方法得到闭环系统的稳定条件,保证所考虑的系统是指数稳定且满足耗散性能。最后,通过仿真研究验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cyber-Physical Systems
Cyber-Physical Systems Engineering-Computational Mechanics
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信