Keyword annotation of biomedicai documents with graph-based similarity methods

Shuguang Wang, M. Hauskrecht
{"title":"Keyword annotation of biomedicai documents with graph-based similarity methods","authors":"Shuguang Wang, M. Hauskrecht","doi":"10.1109/BIBM.2012.6392698","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new approach that lets us extract, and represent relations among terms (concepts) in the documents and uses these relations to support various document analysis applications. Our approach works by building a graph of local co-occurrence relations among terms that are extracted directly from text and by defining a global similarity metric among these terms and sets of terms using the graph and its connectivity. We demonstrate the benefit of the approach on the problem of MeSH keyword annotation of documents based on their abstracts.","PeriodicalId":6392,"journal":{"name":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2012.6392698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we present a new approach that lets us extract, and represent relations among terms (concepts) in the documents and uses these relations to support various document analysis applications. Our approach works by building a graph of local co-occurrence relations among terms that are extracted directly from text and by defining a global similarity metric among these terms and sets of terms using the graph and its connectivity. We demonstrate the benefit of the approach on the problem of MeSH keyword annotation of documents based on their abstracts.
基于图的相似度方法的生物医学文献关键词标注
在本文中,我们提出了一种新的方法,它允许我们提取和表示文档中术语(概念)之间的关系,并使用这些关系来支持各种文档分析应用程序。我们的方法通过构建直接从文本中提取的术语之间的局部共现关系图,并使用图及其连接性在这些术语和术语集之间定义全局相似性度量来工作。我们演示了该方法在基于摘要的文档网格关键字标注问题上的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信