Existence and uniqueness of mild solution to fractional stochastic heat equation

IF 0.7 Q3 STATISTICS & PROBABILITY
K. Ralchenko, G. Shevchenko
{"title":"Existence and uniqueness of mild solution to fractional stochastic heat equation","authors":"K. Ralchenko, G. Shevchenko","doi":"10.15559/18-VMSTA122","DOIUrl":null,"url":null,"abstract":"For a class of non-autonomous parabolic stochastic partial differential equations defined on a bounded open subset $D\\subset \\mathbb {R}^d$ and driven by an $L^2(D)$-valued fractional Brownian motion with the Hurst index $H>1/2$, a new result on existence and uniqueness of a mild solution is established. Compared to the existing results, the uniqueness in a fully nonlinear case is shown, not assuming the coefficient in front of the noise to be affine. Additionally, the existence of moments for the solution is established.","PeriodicalId":42685,"journal":{"name":"Modern Stochastics-Theory and Applications","volume":"46 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2018-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Stochastics-Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15559/18-VMSTA122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

Abstract

For a class of non-autonomous parabolic stochastic partial differential equations defined on a bounded open subset $D\subset \mathbb {R}^d$ and driven by an $L^2(D)$-valued fractional Brownian motion with the Hurst index $H>1/2$, a new result on existence and uniqueness of a mild solution is established. Compared to the existing results, the uniqueness in a fully nonlinear case is shown, not assuming the coefficient in front of the noise to be affine. Additionally, the existence of moments for the solution is established.
分数阶随机热方程温和解的存在唯一性
对于定义在有界开子集$D\子集\mathbb {R}^ D $上的一类非自治抛物型随机偏微分方程,由具有Hurst指标$H>1/2$的$L^2(D)$值分数阶布朗运动驱动,得到了一类温和解的存在唯一性的新结果。与已有结果相比,在不假设噪声前系数为仿射的情况下,证明了完全非线性情况下的唯一性。此外,还证明了解的矩的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Modern Stochastics-Theory and Applications
Modern Stochastics-Theory and Applications STATISTICS & PROBABILITY-
CiteScore
1.30
自引率
50.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信