Jiashu Zhao, J. Huang, Hongbo Deng, Yi Chang, Long Xia
{"title":"Are Topics Interesting or Not? An LDA-based Topic-graph Probabilistic Model for Web Search Personalization","authors":"Jiashu Zhao, J. Huang, Hongbo Deng, Yi Chang, Long Xia","doi":"10.1145/3476106","DOIUrl":null,"url":null,"abstract":"In this article, we propose a Latent Dirichlet Allocation– (LDA) based topic-graph probabilistic personalization model for Web search. This model represents a user graph in a latent topic graph and simultaneously estimates the probabilities that the user is interested in the topics, as well as the probabilities that the user is not interested in the topics. For a given query issued by the user, the webpages that have higher relevancy to the interested topics are promoted, and the webpages more relevant to the non-interesting topics are penalized. In particular, we simulate a user’s search intent by building two profiles: A positive user profile for the probabilities of the user is interested in the topics and a corresponding negative user profile for the probabilities of being not interested in the the topics. The profiles are estimated based on the user’s search logs. A clicked webpage is assumed to include interesting topics. A skipped (viewed but not clicked) webpage is assumed to cover some non-interesting topics to the user. Such estimations are performed in the latent topic space generated by LDA. Moreover, a new approach is proposed to estimate the correlation between a given query and the user’s search history so as to determine how much personalization should be considered for the query. We compare our proposed models with several strong baselines including state-of-the-art personalization approaches. Experiments conducted on a large-scale real user search log collection illustrate the effectiveness of the proposed models.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"14 1","pages":"1 - 24"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems (TOIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In this article, we propose a Latent Dirichlet Allocation– (LDA) based topic-graph probabilistic personalization model for Web search. This model represents a user graph in a latent topic graph and simultaneously estimates the probabilities that the user is interested in the topics, as well as the probabilities that the user is not interested in the topics. For a given query issued by the user, the webpages that have higher relevancy to the interested topics are promoted, and the webpages more relevant to the non-interesting topics are penalized. In particular, we simulate a user’s search intent by building two profiles: A positive user profile for the probabilities of the user is interested in the topics and a corresponding negative user profile for the probabilities of being not interested in the the topics. The profiles are estimated based on the user’s search logs. A clicked webpage is assumed to include interesting topics. A skipped (viewed but not clicked) webpage is assumed to cover some non-interesting topics to the user. Such estimations are performed in the latent topic space generated by LDA. Moreover, a new approach is proposed to estimate the correlation between a given query and the user’s search history so as to determine how much personalization should be considered for the query. We compare our proposed models with several strong baselines including state-of-the-art personalization approaches. Experiments conducted on a large-scale real user search log collection illustrate the effectiveness of the proposed models.