E. Santo, S. G. Soares, O. de, E. Junca, F. Grillo
{"title":"Replacement of lime with industrial wastes in hot metal desulfurization mixtures","authors":"E. Santo, S. G. Soares, O. de, E. Junca, F. Grillo","doi":"10.2298/jmmb210407005s","DOIUrl":null,"url":null,"abstract":"The steel production enhancement in recent decades has increased the solid waste generation in the steel plants. Due to the increase in the environmental policies stringency, efforts have been made to give them a more appropriate destination. In this context, the internal reuse of these materials is a solution often applied by the industry to reduce production costs and to decrease slag generation. Therefore, the aim of this research is to replace calcitic lime by limestone waste and KR slag in hot metal desulfurization, which are wastes from steel production. The KR slag is the waste generated by the desulfurization process in Kambara Reactor. Experimental desulfurization tests were carried out in a resistance furnace at a temperature of 1350?C, in an inert atmosphere with constant stirring of 500 rpm. Along with the tests, simulations were carried out with FactSage 7.0 software in order to obtain the phases present in each mixture at the working temperature and compare them with the practical results. It was found that the tricalcium silicate phase (3CaO?SiO2) was present in mixtures with lower desulfurization efficiency, which shows its kinetic limitation. The use of limestone waste proved to be more efficient than the use of KR slag.","PeriodicalId":51090,"journal":{"name":"Journal of Mining and Metallurgy Section B-Metallurgy","volume":"12 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Metallurgy Section B-Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/jmmb210407005s","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The steel production enhancement in recent decades has increased the solid waste generation in the steel plants. Due to the increase in the environmental policies stringency, efforts have been made to give them a more appropriate destination. In this context, the internal reuse of these materials is a solution often applied by the industry to reduce production costs and to decrease slag generation. Therefore, the aim of this research is to replace calcitic lime by limestone waste and KR slag in hot metal desulfurization, which are wastes from steel production. The KR slag is the waste generated by the desulfurization process in Kambara Reactor. Experimental desulfurization tests were carried out in a resistance furnace at a temperature of 1350?C, in an inert atmosphere with constant stirring of 500 rpm. Along with the tests, simulations were carried out with FactSage 7.0 software in order to obtain the phases present in each mixture at the working temperature and compare them with the practical results. It was found that the tricalcium silicate phase (3CaO?SiO2) was present in mixtures with lower desulfurization efficiency, which shows its kinetic limitation. The use of limestone waste proved to be more efficient than the use of KR slag.
期刊介绍:
University of Belgrade, Technical Faculty in Bor, has been publishing the journal called Journal of Mining and Metallurgy since 1965 and in 1997 it was divided in two independent journals dealing with mining and metallurgy separately. Since 2009 Journal of Mining and Metallurgy, Section B: Metallurgy has been accepted in Science Citation Index Expanded.
Journal of Mining and Metallurgy, Section B: Metallurgy presents an international medium for the publication of contributions on original research which reflect the new progresses in theory and practice of metallurgy. The Journal covers the latest research in all aspects of metallurgy including hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, solidification, mechanical working, solid state reactions, materials processing, surface treatment and relationships among processing, structure, and properties of materials.