DGLMExtPois: Advances in Dealing with Over and Under-dispersion in a Double GLM Framework

R J. Pub Date : 2023-02-10 DOI:10.32614/rj-2023-002
A. J. Sáez-Castillo, A. Conde-Sánchez, Francisco Martínez
{"title":"DGLMExtPois: Advances in Dealing with Over and Under-dispersion in a Double GLM Framework","authors":"A. J. Sáez-Castillo, A. Conde-Sánchez, Francisco Martínez","doi":"10.32614/rj-2023-002","DOIUrl":null,"url":null,"abstract":"In recent years the use of regression models for under-dispersed count data, such as COM-Poisson or hyper-Poisson models, has increased. In this paper the DGLMExtPois package is presented. DGLMExtPois includes a new procedure to estimate the coefficients of a hyper-Poisson regression model within a GLM framework. The estimation process uses a gradient-based algorithm to solve a nonlinear constrained optimization problem. The package also provides an implementation of the COM-Poisson model, proposed by Huang (2017), to make it easy to compare both models. The functionality of the package is illustrated by fitting a model to a real dataset. Furthermore, an experimental comparison is made with other related packages, although none of these packages allow you to fit a hyper-Poisson model.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"85 1","pages":"121-140"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"R J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2023-002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years the use of regression models for under-dispersed count data, such as COM-Poisson or hyper-Poisson models, has increased. In this paper the DGLMExtPois package is presented. DGLMExtPois includes a new procedure to estimate the coefficients of a hyper-Poisson regression model within a GLM framework. The estimation process uses a gradient-based algorithm to solve a nonlinear constrained optimization problem. The package also provides an implementation of the COM-Poisson model, proposed by Huang (2017), to make it easy to compare both models. The functionality of the package is illustrated by fitting a model to a real dataset. Furthermore, an experimental comparison is made with other related packages, although none of these packages allow you to fit a hyper-Poisson model.
DGLMExtPois:在双GLM框架中处理过色散和欠色散的进展
近年来,对欠分散计数数据的回归模型,如com -泊松模型或超泊松模型的使用有所增加。本文介绍了DGLMExtPois包。DGLMExtPois包含了一个在GLM框架内估计超泊松回归模型系数的新程序。估计过程采用基于梯度的算法来解决非线性约束优化问题。该软件包还提供了Huang(2017)提出的COM-Poisson模型的实现,以便于比较两个模型。通过将模型拟合到实际数据集来说明该包的功能。此外,与其他相关软件包进行了实验比较,尽管这些软件包都不允许您拟合超泊松模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信