Machine Learning for Learning at Scale

Peter Norvig
{"title":"Machine Learning for Learning at Scale","authors":"Peter Norvig","doi":"10.1145/2724660.2735205","DOIUrl":null,"url":null,"abstract":"There is great enthusiasm for the idea that massive amounts of data from online interactions of learners with material can lead to a rapid improvement cycle, driven by analysis of the data, experimentation, and intervention to do more of what works and less of what doesn't. This talk discusses techniques for working with massive amounts of data. Peter Norvig is a Director of Research at Google Inc. Previously he was head of Google's core search algorithms group, and of NASA Ames's Computational Sciences Division, making him NASA's senior computer scientist. He received the NASA Exceptional Achievement Award in 2001. He has taught at the University of Southern California and the University of California at Berkeley, from which he received a Ph.D. in 1986 and the distinguished alumni award in 2006. He was co-teacher of an Artificial Intelligence class that signed up 160,000 students, helping to kick off the current round of massive open online classes. His publications include the books Artificial Intelligence: A Modern Approach (the leading textbook in the field), Paradigms of AI Programming: Case Studies in Common Lisp, Verbmobil: A Translation System for Face-to-Face Dialog, and Intelligent Help Systems for UNIX. He is also the author of the Gettysburg Powerpoint Presentation and the world's longest palindromic sentence. He is a fellow of the AAAI, ACM, California Academy of Science and American Academy of Arts & Sciences.","PeriodicalId":20664,"journal":{"name":"Proceedings of the Second (2015) ACM Conference on Learning @ Scale","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second (2015) ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2724660.2735205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There is great enthusiasm for the idea that massive amounts of data from online interactions of learners with material can lead to a rapid improvement cycle, driven by analysis of the data, experimentation, and intervention to do more of what works and less of what doesn't. This talk discusses techniques for working with massive amounts of data. Peter Norvig is a Director of Research at Google Inc. Previously he was head of Google's core search algorithms group, and of NASA Ames's Computational Sciences Division, making him NASA's senior computer scientist. He received the NASA Exceptional Achievement Award in 2001. He has taught at the University of Southern California and the University of California at Berkeley, from which he received a Ph.D. in 1986 and the distinguished alumni award in 2006. He was co-teacher of an Artificial Intelligence class that signed up 160,000 students, helping to kick off the current round of massive open online classes. His publications include the books Artificial Intelligence: A Modern Approach (the leading textbook in the field), Paradigms of AI Programming: Case Studies in Common Lisp, Verbmobil: A Translation System for Face-to-Face Dialog, and Intelligent Help Systems for UNIX. He is also the author of the Gettysburg Powerpoint Presentation and the world's longest palindromic sentence. He is a fellow of the AAAI, ACM, California Academy of Science and American Academy of Arts & Sciences.
大规模学习的机器学习
学习者与材料在线互动的大量数据可以导致快速的改进周期,这一想法受到了极大的热情,通过分析数据、实验和干预来做更多有效的事情,减少无效的事情。这次演讲讨论了处理大量数据的技术。Peter Norvig是谷歌公司的研究主管。此前,他是谷歌核心搜索算法组的负责人,也是美国宇航局艾姆斯计算科学部的负责人,这使他成为美国宇航局的高级计算机科学家。他在2001年获得了美国国家航空航天局的杰出成就奖。他曾任教于南加州大学和加州大学伯克利分校,于1986年获得博士学位,并于2006年获得杰出校友奖。他是一个人工智能课程的联合老师,该课程有16万名学生报名,帮助开启了当前这一轮大规模的在线公开课程。他的著作包括《人工智能:一种现代方法》(该领域领先的教科书)、《人工智能编程范式:通用Lisp案例研究》、《vermobil:面对面对话的翻译系统》和《UNIX智能帮助系统》。他也是葛底斯堡ppt的作者,也是世界上最长的回文句子的作者。他是AAAI, ACM,加州科学院和美国艺术与科学学院的研究员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信