Research on time-varying meshing stiffness of wind turbine gearbox considering tooth surface wear

IF 1.6 3区 工程技术 Q3 ENGINEERING, MECHANICAL
Shuai Mo, Qingsen Hu, Meng-Lin Liu, Lei Wang, Heyun Bao, Guojian Cen, Yunsheng Huang
{"title":"Research on time-varying meshing stiffness of wind turbine gearbox considering tooth surface wear","authors":"Shuai Mo, Qingsen Hu, Meng-Lin Liu, Lei Wang, Heyun Bao, Guojian Cen, Yunsheng Huang","doi":"10.1177/13506501231172258","DOIUrl":null,"url":null,"abstract":"The time-varying meshing stiffness (TVMS) is an important element of the gear system. In this paper, the TVMS of each gear set of a wind turbine gearbox is calculated based on the principle of potential energy method, where wear is the most likely failure in the operation of a wind turbine gearbox. Therefore, the Archard wear model is brought into it, and theoretically the analytical formula of stiffness considering tooth wear is derived, and the time-varying wear depth is deduced as the natural wind speed keeps changing and the input torque of the wind turbine gearbox keeps changing. The interrelationship between gear tooth wear and meshing pressure angle and number of meshes is studied in depth, and the TVMS of each gear set under wear is calculated using the modified tooth profile model. The results show that the tooth profile wear depth is related to the gear meshing angle, and the tooth profile wear depth becomes larger as the number of meshes increases, thus reducing the TVMS of the wind turbine, and the TVMS shows irregular fluctuations under time-varying wear.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13506501231172258","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The time-varying meshing stiffness (TVMS) is an important element of the gear system. In this paper, the TVMS of each gear set of a wind turbine gearbox is calculated based on the principle of potential energy method, where wear is the most likely failure in the operation of a wind turbine gearbox. Therefore, the Archard wear model is brought into it, and theoretically the analytical formula of stiffness considering tooth wear is derived, and the time-varying wear depth is deduced as the natural wind speed keeps changing and the input torque of the wind turbine gearbox keeps changing. The interrelationship between gear tooth wear and meshing pressure angle and number of meshes is studied in depth, and the TVMS of each gear set under wear is calculated using the modified tooth profile model. The results show that the tooth profile wear depth is related to the gear meshing angle, and the tooth profile wear depth becomes larger as the number of meshes increases, thus reducing the TVMS of the wind turbine, and the TVMS shows irregular fluctuations under time-varying wear.
考虑齿面磨损的风电齿轮箱时变啮合刚度研究
时变啮合刚度(TVMS)是齿轮系统的重要组成部分。本文根据势能法原理计算风电齿轮箱各齿轮组的TVMS,其中磨损是风电齿轮箱运行中最可能出现的故障。为此,引入Archard磨损模型,从理论上推导出考虑齿磨损的刚度解析公式,并推导出风力机齿轮箱在自然风速和输入转矩不断变化时的随时间变化的磨损深度。深入研究了齿轮齿磨损与啮合压力角和啮合数的相互关系,并利用改进的齿形模型计算了各齿轮组在磨损情况下的TVMS。结果表明:齿形磨损深度与齿轮啮合角度有关,且齿形磨损深度随着啮合数的增加而增大,从而降低了风力机的TVMS,且TVMS在时变磨损下呈不规则波动;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
5.00%
发文量
110
审稿时长
6.1 months
期刊介绍: The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications. "I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信