Microarray Missing Value Imputation by Iterated Local Least Squares

Zhipeng Cai, M. Heydari, Guohui Lin
{"title":"Microarray Missing Value Imputation by Iterated Local Least Squares","authors":"Zhipeng Cai, M. Heydari, Guohui Lin","doi":"10.1142/9781860947292_0019","DOIUrl":null,"url":null,"abstract":"Microarray gene expression data often contains missing values resulted from various reasons. However, most of the gene expression data analysis algorithms, such as clustering, classification and network design, require complete information, that is, without any missing values. It is therefore very important to accurately impute the missing values before applying the data analysis algorithms. In this paper, anIterated Local Least Squares Imputation method (ILLsimpute) is proposed to estimate the missing values. In ILLsimpute, a similarity threshold is learned using known expression values and at every iteration it is used to obtain a set of coherent genes for every target gene containing missing values. The target gene is then represented as a linear combination of the coherent genes, using the least squares. The algorithm terminates after certain iterations or when the imputation converges. The experimental results on real microarray datasets show that ILLsimpute outperforms three most recent methods on several commonly tested datasets.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"38 1","pages":"159-168"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860947292_0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Microarray gene expression data often contains missing values resulted from various reasons. However, most of the gene expression data analysis algorithms, such as clustering, classification and network design, require complete information, that is, without any missing values. It is therefore very important to accurately impute the missing values before applying the data analysis algorithms. In this paper, anIterated Local Least Squares Imputation method (ILLsimpute) is proposed to estimate the missing values. In ILLsimpute, a similarity threshold is learned using known expression values and at every iteration it is used to obtain a set of coherent genes for every target gene containing missing values. The target gene is then represented as a linear combination of the coherent genes, using the least squares. The algorithm terminates after certain iterations or when the imputation converges. The experimental results on real microarray datasets show that ILLsimpute outperforms three most recent methods on several commonly tested datasets.
迭代局部最小二乘法的微阵列缺失值估算
由于各种原因,微阵列基因表达数据往往存在缺失值。然而,大多数基因表达数据分析算法,如聚类、分类和网络设计,都需要完整的信息,即没有任何缺失值。因此,在应用数据分析算法之前,准确地估算缺失值是非常重要的。本文提出了迭代局部最小二乘插值法(ILLsimpute)来估计缺失值。在ilsimpute中,使用已知的表达值学习相似阈值,并在每次迭代中使用它为每个包含缺失值的目标基因获得一组连贯的基因。然后使用最小二乘法将目标基因表示为相干基因的线性组合。该算法在经过一定的迭代或当插值收敛时终止。在实际微阵列数据集上的实验结果表明,ILLsimpute在几个常用的测试数据集上优于三种最新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信