Streaming Botnet traffic analysis using bio-inspired active learning

Sara Khanchi, A. N. Zincir-Heywood, M. Heywood
{"title":"Streaming Botnet traffic analysis using bio-inspired active learning","authors":"Sara Khanchi, A. N. Zincir-Heywood, M. Heywood","doi":"10.1109/NOMS.2018.8406293","DOIUrl":null,"url":null,"abstract":"Non-stationary network traffic, together with stealth occurrences of malicious behaviors, make analyzing network traffic challenging. In this research, a machine learning framework is used to incrementally learn the network behavior and adapt to the changes in the traffic. This framework works under two main constraints: 1) label budget, 2) class imbalance; which makes it suitable for real-world network scenarios. Evaluations are performed on a public dataset with multiple Botnet scenarios under 0.5% and 5% label budgets; only around 2.2% of traffic is Botnet. Our results demonstrate the significance of the proposed Stream Genetic Programming solution and a general robustness to factors such as long latencies between instances of the same Botnet.","PeriodicalId":19331,"journal":{"name":"NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium","volume":"22 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOMS.2018.8406293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Non-stationary network traffic, together with stealth occurrences of malicious behaviors, make analyzing network traffic challenging. In this research, a machine learning framework is used to incrementally learn the network behavior and adapt to the changes in the traffic. This framework works under two main constraints: 1) label budget, 2) class imbalance; which makes it suitable for real-world network scenarios. Evaluations are performed on a public dataset with multiple Botnet scenarios under 0.5% and 5% label budgets; only around 2.2% of traffic is Botnet. Our results demonstrate the significance of the proposed Stream Genetic Programming solution and a general robustness to factors such as long latencies between instances of the same Botnet.
流式僵尸网络流量分析使用生物启发的主动学习
网络流量的不稳定以及恶意行为的隐形发生,给网络流量分析带来了挑战。在本研究中,使用机器学习框架来增量学习网络行为并适应流量的变化。这个框架在两个主要约束下工作:1)标签预算,2)阶级不平衡;这使得它适用于现实世界的网络场景。评估是在一个公共数据集上进行的,在0.5%和5%的标签预算下,有多个僵尸网络场景;只有2.2%的流量来自僵尸网络。我们的结果证明了所提出的流遗传规划解决方案的重要性,以及对相同僵尸网络实例之间的长延迟等因素的一般鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信