Block-Coded Modulation Using Two-Level Group Codes Over Generalized Quaternion Groups

T. Selvakumaran, B. Rajan
{"title":"Block-Coded Modulation Using Two-Level Group Codes Over Generalized Quaternion Groups","authors":"T. Selvakumaran, B. Rajan","doi":"10.1109/18.746847","DOIUrl":null,"url":null,"abstract":"A length n group code over a group G is a subgroup of G/sup n/ under component-wise group operation. Two-level group codes over the class of generalized quaternion groups, Q(2/sup m/), m/spl ges/3, are constructed using a binary code and a code over Z(2/sup m-1/), the ring of integers modulo 2/sup m-1/ as component codes and a mapping f from Z/sub 2//spl times/Z(2/sup m-1/)to Q(2/sup m/). A set of necessary and sufficient conditions on the component codes is derived which will give group codes over Q(2/sup m/). Given the generator matrices of the component codes, the computational effort involved in checking the necessary and sufficient conditions is discussed. Starting from a four-dimensional signal set matched to Q(2/sup m/), it is shown that the Euclidean space codes obtained from the group codes over Q(2/sup m/) have Euclidean distance profiles which are independent of the coset representative selection involved in f. A closed-form expression for the minimum Euclidean distance of the resulting group codes over Q(2/sup m/) is obtained in terms of the Euclidean distances of the component codes. Finally, it is shown that all four-dimensional signal sets matched to Q(2/sup m/) have the same Euclidean distance profile and hence the Euclidean space codes corresponding to each signal set for a given group code over Q(2/sup m/) are automorphic Euclidean-distance equivalent.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"1 1","pages":"365-372"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/18.746847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A length n group code over a group G is a subgroup of G/sup n/ under component-wise group operation. Two-level group codes over the class of generalized quaternion groups, Q(2/sup m/), m/spl ges/3, are constructed using a binary code and a code over Z(2/sup m-1/), the ring of integers modulo 2/sup m-1/ as component codes and a mapping f from Z/sub 2//spl times/Z(2/sup m-1/)to Q(2/sup m/). A set of necessary and sufficient conditions on the component codes is derived which will give group codes over Q(2/sup m/). Given the generator matrices of the component codes, the computational effort involved in checking the necessary and sufficient conditions is discussed. Starting from a four-dimensional signal set matched to Q(2/sup m/), it is shown that the Euclidean space codes obtained from the group codes over Q(2/sup m/) have Euclidean distance profiles which are independent of the coset representative selection involved in f. A closed-form expression for the minimum Euclidean distance of the resulting group codes over Q(2/sup m/) is obtained in terms of the Euclidean distances of the component codes. Finally, it is shown that all four-dimensional signal sets matched to Q(2/sup m/) have the same Euclidean distance profile and hence the Euclidean space codes corresponding to each signal set for a given group code over Q(2/sup m/) are automorphic Euclidean-distance equivalent.
在广义四元数群上使用两级群码的分组编码调制
在分组运算中,长度为n的组码在组G上是G/sup n/的子群。利用二进制码和Z(2/sup m-1/)上的码、模数为2/sup m-1/的整数环以及Z/sub 2//spl乘/Z(2/sup m-1/)到Q(2/sup m-1/)的映射,构造了广义四元数群Q(2/sup m-1/), m/spl ges/3上的二水平群码。导出了一组分量码的充分必要条件,可得到Q(2/sup m/)以上的群码。给出了构件码的生成矩阵,讨论了检验构件码的充要条件所涉及的计算量。从与Q(2/sup m/)匹配的四维信号集出发,证明了由Q(2/sup m/)上的群码得到的欧氏空间码具有与f中所涉及的协集代表性选择无关的欧氏距离轮廓。得到了Q(2/sup m/)上得到的群码的最小欧氏距离用分量码的欧氏距离表示的封闭形式。最后,证明了与Q(2/sup m/)匹配的所有四维信号集具有相同的欧几里得距离轮廓,因此在Q(2/sup m/)上给定群码的每个信号集对应的欧几里得空间码是自同构欧几里得距离等效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信