Actived Edge Strength for Image Quality Assessment

Minjuan Gao, Xuande Zhang
{"title":"Actived Edge Strength for Image Quality Assessment","authors":"Minjuan Gao, Xuande Zhang","doi":"10.1109/ISPACS48206.2019.8986261","DOIUrl":null,"url":null,"abstract":"These years has witnessed the success of deep learning methods in computer vision. The approximation capabilities of neural networks is partly responsible for these success, and active function is crucial for the approximation capability. Motivated by the success of deep learning, this paper presents an Actived Edge Strength Similarity (AESSIM) based image quality assessment algorithm. Numerical experiments on the public datasets indicates that AESSIM is quite competitive in assessing performance.","PeriodicalId":6765,"journal":{"name":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"3 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS48206.2019.8986261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

These years has witnessed the success of deep learning methods in computer vision. The approximation capabilities of neural networks is partly responsible for these success, and active function is crucial for the approximation capability. Motivated by the success of deep learning, this paper presents an Actived Edge Strength Similarity (AESSIM) based image quality assessment algorithm. Numerical experiments on the public datasets indicates that AESSIM is quite competitive in assessing performance.
用于图像质量评估的激活边缘强度
这些年来,深度学习方法在计算机视觉领域取得了成功。神经网络的逼近能力是这些成功的部分原因,而主动函数是逼近能力的关键。受深度学习成功的启发,本文提出了一种基于激活边缘强度相似度(AESSIM)的图像质量评估算法。在公共数据集上的数值实验表明,AESSIM在评估性能方面具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信