Endo-trivial modules for cyclic p-groups and generalized quaternion groups via Galois descent

J. V. D. Meer, R. Wong
{"title":"Endo-trivial modules for cyclic p-groups and generalized quaternion groups via Galois descent","authors":"J. V. D. Meer, R. Wong","doi":"10.26153/TSW/13645","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the group of endotrivial modules for certain $p$-groups. Such groups were already been computed by Carlson-Thevenaz using the theory of support varieties; however, we provide novel homotopical proofs of their results for cyclic $p$-groups, the quaternion group of order 8, and for generalized quaternion groups using Galois descent and Picard spectral sequences, building on results of Mathew and Stojanoska. Our computations provide conceptual insights into the classical work of Carlson-Thevenaz.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26153/TSW/13645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we investigate the group of endotrivial modules for certain $p$-groups. Such groups were already been computed by Carlson-Thevenaz using the theory of support varieties; however, we provide novel homotopical proofs of their results for cyclic $p$-groups, the quaternion group of order 8, and for generalized quaternion groups using Galois descent and Picard spectral sequences, building on results of Mathew and Stojanoska. Our computations provide conceptual insights into the classical work of Carlson-Thevenaz.
基于伽罗瓦下降的循环p群和广义四元数群的内平凡模
本文研究了一类$p$-群的内平凡模群。这样的群已经被Carlson-Thevenaz用支持变量理论计算过了;然而,我们在Mathew和Stojanoska的结果的基础上,利用伽罗瓦下降和Picard谱序列,为循环$p$-群、8阶四元数群和广义四元数群提供了新的同调证明。我们的计算为Carlson-Thevenaz的经典作品提供了概念性的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信