QSAR Modeling of Thirty Active Compounds for the Inhibition of the Acetylcholinesterase Enzyme

N. Hammoudi, Yacine Benguerba, W. Sobhi
{"title":"QSAR Modeling of Thirty Active Compounds for the Inhibition of the Acetylcholinesterase Enzyme","authors":"N. Hammoudi, Yacine Benguerba, W. Sobhi","doi":"10.3844/ajbsp.2019.62.65","DOIUrl":null,"url":null,"abstract":"This work aims at developing a reliable and predictive QSAR model which allows, on one hand, an exploration of the main molecular descriptors responsible for the inhibitory activity towards the Acetylcholinesterase enzyme and, on the other hand, predict the inhibitory activity of new compounds before testing them experimentally. This study involves a series of DL0410 and its 29 DL0410 derivatives. The Multiple Linear Regression (MLR) analysis is carried out to derive the QSAR model. The results indicate that the QSAR model is robust and possesses a high predictive capacity.","PeriodicalId":11025,"journal":{"name":"Current Research in Bioinformatics","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/ajbsp.2019.62.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This work aims at developing a reliable and predictive QSAR model which allows, on one hand, an exploration of the main molecular descriptors responsible for the inhibitory activity towards the Acetylcholinesterase enzyme and, on the other hand, predict the inhibitory activity of new compounds before testing them experimentally. This study involves a series of DL0410 and its 29 DL0410 derivatives. The Multiple Linear Regression (MLR) analysis is carried out to derive the QSAR model. The results indicate that the QSAR model is robust and possesses a high predictive capacity.
30种活性化合物抑制乙酰胆碱酯酶的QSAR模型
这项工作的目的是开发一个可靠的和可预测的QSAR模型,该模型一方面允许探索负责对乙酰胆碱酯酶抑制活性的主要分子描述符,另一方面,在实验测试之前预测新化合物的抑制活性。本研究涉及一系列DL0410及其29个DL0410衍生物。采用多元线性回归(MLR)方法推导了QSAR模型。结果表明,该模型具有较强的鲁棒性和较高的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信