Extended Glivenko–Cantelli theorem and L 1 strong consistency of innovation density estimator for time-varying semiparametric ARCH model

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Chen Zhong
{"title":"Extended Glivenko–Cantelli theorem and L 1 strong consistency of innovation density estimator for time-varying semiparametric ARCH model","authors":"Chen Zhong","doi":"10.1080/10485252.2022.2152813","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper extends the classical Glivenko–Cantelli theorem for the empirical cumulative distribution function based on the innovations in the ARCH model with a slowly time-varying trend. In this semiparametric time-varying model, strong consistency for the innovation density estimator via kernel smoothing method is established, given that the trend and ARCH parameter estimators meet some mild conditions. Besides, the strong consistency for the Gaussian quasi maximum likelihood estimator (QMLE) in the time-varying ARCH parameter is established as well. Moreover, in terms of the existence of the trend in the data, two major nonparametric trend estimators, B-spline and kernel estimators, are shown to be appropriate for the strong consistency results.","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"99 1","pages":"373 - 396"},"PeriodicalIF":0.8000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonparametric Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10485252.2022.2152813","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT This paper extends the classical Glivenko–Cantelli theorem for the empirical cumulative distribution function based on the innovations in the ARCH model with a slowly time-varying trend. In this semiparametric time-varying model, strong consistency for the innovation density estimator via kernel smoothing method is established, given that the trend and ARCH parameter estimators meet some mild conditions. Besides, the strong consistency for the Gaussian quasi maximum likelihood estimator (QMLE) in the time-varying ARCH parameter is established as well. Moreover, in terms of the existence of the trend in the data, two major nonparametric trend estimators, B-spline and kernel estimators, are shown to be appropriate for the strong consistency results.
时变半参数ARCH模型创新密度估计的扩展Glivenko-Cantelli定理和L 1强相合性
本文基于具有慢时变趋势的ARCH模型的创新,对经典的经验累积分布函数Glivenko-Cantelli定理进行了推广。在该半参数时变模型中,在趋势估计量和ARCH参数估计量满足一定温和条件的情况下,通过核平滑方法建立了创新密度估计量的强相合性。此外,还建立了时变ARCH参数下高斯拟极大似然估计的强相合性。此外,就数据中趋势的存在性而言,两种主要的非参数趋势估计量,b样条和核估计量,被证明适合于强一致性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nonparametric Statistics
Journal of Nonparametric Statistics 数学-统计学与概率论
CiteScore
1.50
自引率
8.30%
发文量
42
审稿时长
6-12 weeks
期刊介绍: Journal of Nonparametric Statistics provides a medium for the publication of research and survey work in nonparametric statistics and related areas. The scope includes, but is not limited to the following topics: Nonparametric modeling, Nonparametric function estimation, Rank and other robust and distribution-free procedures, Resampling methods, Lack-of-fit testing, Multivariate analysis, Inference with high-dimensional data, Dimension reduction and variable selection, Methods for errors in variables, missing, censored, and other incomplete data structures, Inference of stochastic processes, Sample surveys, Time series analysis, Longitudinal and functional data analysis, Nonparametric Bayes methods and decision procedures, Semiparametric models and procedures, Statistical methods for imaging and tomography, Statistical inverse problems, Financial statistics and econometrics, Bioinformatics and comparative genomics, Statistical algorithms and machine learning. Both the theory and applications of nonparametric statistics are covered in the journal. Research applying nonparametric methods to medicine, engineering, technology, science and humanities is welcomed, provided the novelty and quality level are of the highest order. Authors are encouraged to submit supplementary technical arguments, computer code, data analysed in the paper or any additional information for online publication along with the published paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信