{"title":"Effect of water vapor on the reduction kinetics of hematite powder by hydrogen-water vapor in different stages","authors":"X. Mao, X. Hu, Yuewen Fan, K. Chou","doi":"10.2298/jmmb220523006m","DOIUrl":null,"url":null,"abstract":"The powder of hematite sample was isothermally reduced with hydrogen-water vapor gas mixture at 1023K-1273K. The results indicated that the overall reduction process of hematite could be separated into three stages (Fe2O3-Fe3O4-FeO-Fe) to respectively study. At 1023K, the average reaction rate dropped by 53.6% in the stage 1 when the water vapor content of gas reactant rose from 0% to 50%, and it decreased by about 77.2% in the stage 2. However, in the stage 3, when the water vapor content only increased from 0% to 20%, it decreased by about 78.1%. Besides, the average reaction rate had a roughly negative linear relationship with the water vapor content, and the results further shown that the effect of water vapor on the reduction reaction increased with increasing reaction temperature at all stages of the reduction reaction. The microstructure of reduction products showed that it still had some holes, which the channel for hydrogen diffusion was not seriously blocked. In order to further clarify the influence of water vapor in the reduction stage, different models were considered, and the range of apparent activation energy of different stages obtained by model fitting was about 20-70 kJ/mol, which also confirmed the absence of solid-state diffusion phenomenon.","PeriodicalId":51090,"journal":{"name":"Journal of Mining and Metallurgy Section B-Metallurgy","volume":"25 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Metallurgy Section B-Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/jmmb220523006m","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The powder of hematite sample was isothermally reduced with hydrogen-water vapor gas mixture at 1023K-1273K. The results indicated that the overall reduction process of hematite could be separated into three stages (Fe2O3-Fe3O4-FeO-Fe) to respectively study. At 1023K, the average reaction rate dropped by 53.6% in the stage 1 when the water vapor content of gas reactant rose from 0% to 50%, and it decreased by about 77.2% in the stage 2. However, in the stage 3, when the water vapor content only increased from 0% to 20%, it decreased by about 78.1%. Besides, the average reaction rate had a roughly negative linear relationship with the water vapor content, and the results further shown that the effect of water vapor on the reduction reaction increased with increasing reaction temperature at all stages of the reduction reaction. The microstructure of reduction products showed that it still had some holes, which the channel for hydrogen diffusion was not seriously blocked. In order to further clarify the influence of water vapor in the reduction stage, different models were considered, and the range of apparent activation energy of different stages obtained by model fitting was about 20-70 kJ/mol, which also confirmed the absence of solid-state diffusion phenomenon.
期刊介绍:
University of Belgrade, Technical Faculty in Bor, has been publishing the journal called Journal of Mining and Metallurgy since 1965 and in 1997 it was divided in two independent journals dealing with mining and metallurgy separately. Since 2009 Journal of Mining and Metallurgy, Section B: Metallurgy has been accepted in Science Citation Index Expanded.
Journal of Mining and Metallurgy, Section B: Metallurgy presents an international medium for the publication of contributions on original research which reflect the new progresses in theory and practice of metallurgy. The Journal covers the latest research in all aspects of metallurgy including hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, solidification, mechanical working, solid state reactions, materials processing, surface treatment and relationships among processing, structure, and properties of materials.