Time Encoding Using the Hyperbolic Secant Kernel

M. Hilton, Roxana Alexandru, P. Dragotti
{"title":"Time Encoding Using the Hyperbolic Secant Kernel","authors":"M. Hilton, Roxana Alexandru, P. Dragotti","doi":"10.23919/Eusipco47968.2020.9287806","DOIUrl":null,"url":null,"abstract":"We investigate the problem of reconstructing signals with finite rate of innovation from non-uniform samples obtained using an integrate-and-fire system. We assume that the signal is first filtered using the derivative of a hyperbolic secant as a sampling kernel. Timing information is then obtained using an integrator and a threshold detector. The reconstruction method we propose achieves perfect reconstruction of streams of K Diracs at arbitrary time locations, or equivalently piecewise constant signals with discontinuities at arbitrary time locations, using as few as 3K+1 non-uniform samples.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"98 5 1","pages":"2304-2308"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We investigate the problem of reconstructing signals with finite rate of innovation from non-uniform samples obtained using an integrate-and-fire system. We assume that the signal is first filtered using the derivative of a hyperbolic secant as a sampling kernel. Timing information is then obtained using an integrator and a threshold detector. The reconstruction method we propose achieves perfect reconstruction of streams of K Diracs at arbitrary time locations, or equivalently piecewise constant signals with discontinuities at arbitrary time locations, using as few as 3K+1 non-uniform samples.
使用双曲正割核的时间编码
我们研究了用积分-火力系统从非均匀样本中以有限创新率重建信号的问题。我们假设信号首先使用双曲正割的导数作为采样核进行滤波。然后使用积分器和阈值检测器获得时序信息。我们提出的重建方法可以在任意时间位置实现K狄拉克流的完美重建,或者等效的在任意时间位置具有不连续的分段常数信号,只需3K+1个非均匀样本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信