Uniform spanning forests on biased Euclidean lattices

IF 1.5 Q2 PHYSICS, MATHEMATICAL
Zhan Shi, V. Sidoravicius, He Song, Longmin Wang, Kainan Xiang
{"title":"Uniform spanning forests on biased Euclidean lattices","authors":"Zhan Shi, V. Sidoravicius, He Song, Longmin Wang, Kainan Xiang","doi":"10.1214/20-AIHP1119","DOIUrl":null,"url":null,"abstract":"The uniform spanning forest measure (USF) on a locally finite, infinite connected graph with conductance c is defined as a weak limit of uniform spanning tree measure on finite subgraphs. Depending on the underlying graph and conductances, the corresponding USF is not necessarily concentrated on the set of spanning trees. Pemantle [20] showed that on Z, equipped with the unit conductance c = 1, USF is concentrated on spanning trees if and only if d ≤ 4. In this work we study the USF associated with conductances c(e) = λ−|e|, where |e| is the graph distance of the edge e from the origin, and λ ∈ (0, 1) is a fixed parameter. Our main result states that in this case USF consists of finitely many trees if and only if d = 2 or 3. More precisely, we prove that the uniform spanning forest has 2 trees if d = 2 or 3, and infinitely many trees if d ≥ 4. Our method relies on the analysis of the spectral radius and the speed of the λ-biased random walk on Z. AMS 2010 subject classifications. Primary 60J10, 60G50, 05C81; secondary 60C05, 05C63, 05C80.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":"46 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/20-AIHP1119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

Abstract

The uniform spanning forest measure (USF) on a locally finite, infinite connected graph with conductance c is defined as a weak limit of uniform spanning tree measure on finite subgraphs. Depending on the underlying graph and conductances, the corresponding USF is not necessarily concentrated on the set of spanning trees. Pemantle [20] showed that on Z, equipped with the unit conductance c = 1, USF is concentrated on spanning trees if and only if d ≤ 4. In this work we study the USF associated with conductances c(e) = λ−|e|, where |e| is the graph distance of the edge e from the origin, and λ ∈ (0, 1) is a fixed parameter. Our main result states that in this case USF consists of finitely many trees if and only if d = 2 or 3. More precisely, we prove that the uniform spanning forest has 2 trees if d = 2 or 3, and infinitely many trees if d ≥ 4. Our method relies on the analysis of the spectral radius and the speed of the λ-biased random walk on Z. AMS 2010 subject classifications. Primary 60J10, 60G50, 05C81; secondary 60C05, 05C63, 05C80.
在偏欧几里得格上均匀跨越森林
将电导为c的局部有限无限连通图上的一致生成树测度(USF)定义为有限子图上一致生成树测度的弱极限。根据底层图和电导的不同,相应的USF不一定集中在生成树的集合上。Pemantle[20]表明,在单位电导c = 1的Z上,USF集中在生成树上当且仅当d≤4。本文研究电导c(e) = λ−|e|时的USF,其中|e|是边e到原点的图距离,λ∈(0,1)是一个固定参数。我们的主要结果表明,在这种情况下,当且仅当d = 2或3时,USF由有限多棵树组成。更准确地说,我们证明了当d = 2或3时一致生成森林有2棵树,当d≥4时一致生成森林有无穷多棵树。我们的方法依赖于对Z. AMS 2010主题分类的光谱半径和λ偏随机漫步速度的分析。初级60J10、60G50、055c81;二级60C05、055c63、055c80。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信