Maurer–Cartan deformation of Lagrangians

IF 0.6 3区 数学 Q3 MATHEMATICS
Hansol Hong
{"title":"Maurer–Cartan deformation of Lagrangians","authors":"Hansol Hong","doi":"10.4310/jsg.2023.v21.n1.a1","DOIUrl":null,"url":null,"abstract":"The Maurer-Cartan algebra of a Lagrangian $L$ is the algebra that encodes the deformation of the Floer complex $CF(L,L;\\Lambda)$ as an $A_\\infty$-algebra. We identify the Maurer-Cartan algebra with the $0$-th cohomology of the Koszul dual dga of $CF(L,L;\\Lambda)$. Making use of the identification, we prove that there exists a natural isomorphism between the Maurer-Cartan algebra of $L$ and a certain analytic completion of the wrapped Floer cohomology of another Lagrangian $G$ when $G$ is \\emph{dual} to $L$ in the sense to be defined. In view of mirror symmetry, this can be understood as specifying a local chart associated with $L$ in the mirror rigid analytic space. We examine the idea by explicit calculation of the isomorphism for several interesting examples.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"33 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2023.v21.n1.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Maurer-Cartan algebra of a Lagrangian $L$ is the algebra that encodes the deformation of the Floer complex $CF(L,L;\Lambda)$ as an $A_\infty$-algebra. We identify the Maurer-Cartan algebra with the $0$-th cohomology of the Koszul dual dga of $CF(L,L;\Lambda)$. Making use of the identification, we prove that there exists a natural isomorphism between the Maurer-Cartan algebra of $L$ and a certain analytic completion of the wrapped Floer cohomology of another Lagrangian $G$ when $G$ is \emph{dual} to $L$ in the sense to be defined. In view of mirror symmetry, this can be understood as specifying a local chart associated with $L$ in the mirror rigid analytic space. We examine the idea by explicit calculation of the isomorphism for several interesting examples.
拉格朗日量的毛雷尔-卡坦变形
拉格朗日的毛雷尔-卡坦代数$L$是将花复合体$CF(L,L;\Lambda)$的变形编码为$A_\infty$ -代数的代数。我们用$CF(L,L;\Lambda)$的Koszul对偶dga的$0$ -上同调来确定Maurer-Cartan代数。利用这个证明,证明了当$G$在待定义意义上\emph{对偶}于$L$时,$L$的Maurer-Cartan代数与另一个拉格朗日方程$G$的缠结Floer上同构的某种解析补全之间存在自然同构。考虑到镜像对称性,这可以理解为在镜像刚性解析空间中指定一个与$L$相关的局部图。我们通过对几个有趣的例子的同构的显式计算来检验这个思想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信