Maurer–Cartan deformation of Lagrangians

Pub Date : 2020-09-07 DOI:10.4310/jsg.2023.v21.n1.a1
Hansol Hong
{"title":"Maurer–Cartan deformation of Lagrangians","authors":"Hansol Hong","doi":"10.4310/jsg.2023.v21.n1.a1","DOIUrl":null,"url":null,"abstract":"The Maurer-Cartan algebra of a Lagrangian $L$ is the algebra that encodes the deformation of the Floer complex $CF(L,L;\\Lambda)$ as an $A_\\infty$-algebra. We identify the Maurer-Cartan algebra with the $0$-th cohomology of the Koszul dual dga of $CF(L,L;\\Lambda)$. Making use of the identification, we prove that there exists a natural isomorphism between the Maurer-Cartan algebra of $L$ and a certain analytic completion of the wrapped Floer cohomology of another Lagrangian $G$ when $G$ is \\emph{dual} to $L$ in the sense to be defined. In view of mirror symmetry, this can be understood as specifying a local chart associated with $L$ in the mirror rigid analytic space. We examine the idea by explicit calculation of the isomorphism for several interesting examples.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2023.v21.n1.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Maurer-Cartan algebra of a Lagrangian $L$ is the algebra that encodes the deformation of the Floer complex $CF(L,L;\Lambda)$ as an $A_\infty$-algebra. We identify the Maurer-Cartan algebra with the $0$-th cohomology of the Koszul dual dga of $CF(L,L;\Lambda)$. Making use of the identification, we prove that there exists a natural isomorphism between the Maurer-Cartan algebra of $L$ and a certain analytic completion of the wrapped Floer cohomology of another Lagrangian $G$ when $G$ is \emph{dual} to $L$ in the sense to be defined. In view of mirror symmetry, this can be understood as specifying a local chart associated with $L$ in the mirror rigid analytic space. We examine the idea by explicit calculation of the isomorphism for several interesting examples.
分享
查看原文
拉格朗日量的毛雷尔-卡坦变形
拉格朗日的毛雷尔-卡坦代数$L$是将花复合体$CF(L,L;\Lambda)$的变形编码为$A_\infty$ -代数的代数。我们用$CF(L,L;\Lambda)$的Koszul对偶dga的$0$ -上同调来确定Maurer-Cartan代数。利用这个证明,证明了当$G$在待定义意义上\emph{对偶}于$L$时,$L$的Maurer-Cartan代数与另一个拉格朗日方程$G$的缠结Floer上同构的某种解析补全之间存在自然同构。考虑到镜像对称性,这可以理解为在镜像刚性解析空间中指定一个与$L$相关的局部图。我们通过对几个有趣的例子的同构的显式计算来检验这个思想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信