{"title":"Maurer–Cartan deformation of Lagrangians","authors":"Hansol Hong","doi":"10.4310/jsg.2023.v21.n1.a1","DOIUrl":null,"url":null,"abstract":"The Maurer-Cartan algebra of a Lagrangian $L$ is the algebra that encodes the deformation of the Floer complex $CF(L,L;\\Lambda)$ as an $A_\\infty$-algebra. We identify the Maurer-Cartan algebra with the $0$-th cohomology of the Koszul dual dga of $CF(L,L;\\Lambda)$. Making use of the identification, we prove that there exists a natural isomorphism between the Maurer-Cartan algebra of $L$ and a certain analytic completion of the wrapped Floer cohomology of another Lagrangian $G$ when $G$ is \\emph{dual} to $L$ in the sense to be defined. In view of mirror symmetry, this can be understood as specifying a local chart associated with $L$ in the mirror rigid analytic space. We examine the idea by explicit calculation of the isomorphism for several interesting examples.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"33 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2023.v21.n1.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Maurer-Cartan algebra of a Lagrangian $L$ is the algebra that encodes the deformation of the Floer complex $CF(L,L;\Lambda)$ as an $A_\infty$-algebra. We identify the Maurer-Cartan algebra with the $0$-th cohomology of the Koszul dual dga of $CF(L,L;\Lambda)$. Making use of the identification, we prove that there exists a natural isomorphism between the Maurer-Cartan algebra of $L$ and a certain analytic completion of the wrapped Floer cohomology of another Lagrangian $G$ when $G$ is \emph{dual} to $L$ in the sense to be defined. In view of mirror symmetry, this can be understood as specifying a local chart associated with $L$ in the mirror rigid analytic space. We examine the idea by explicit calculation of the isomorphism for several interesting examples.
期刊介绍:
Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.