Lyapunov Mappings and Analysis of a Nonlinear Spatio-temporal Epidemic Model

M. Kamrujjaman, Md. Saiful Islam, Md. Shahidul Islam
{"title":"Lyapunov Mappings and Analysis of a Nonlinear Spatio-temporal Epidemic Model","authors":"M. Kamrujjaman, Md. Saiful Islam, Md. Shahidul Islam","doi":"10.3329/dujs.v69i3.60026","DOIUrl":null,"url":null,"abstract":"This paper focuses on the global asymptotic properties of the SIR diffusive model for infectious diseases. Using the analytic technique with Lyapunov functions, we developed conditions for the global attractor of a unique disease steady-state and the disease free equilibrium. The most eminent refuge to the model is the direct Lyapunov mapping. We investigate the global well-posedness of the mathematical model, determine conditions on Ro for which non-trivial equilibrium states exist, and examine their global stability. We are interested in finding the model’s basic reproductive number, which determines whether the disease dies out or persists in the population. Finally, we consider a series of computational results to verify the theoretical results. The extensive numerical simulations show the dynamics of different population groups over time. The effects of different parameters on the compartments are shown in detail. The findings allude that the dynamics of the system are entirely estimated by the deterministic value Ro.\nDhaka Univ. J. Sci. 69(3): 161-170, 2022 (June)","PeriodicalId":11280,"journal":{"name":"Dhaka University Journal of Science","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dhaka University Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/dujs.v69i3.60026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the global asymptotic properties of the SIR diffusive model for infectious diseases. Using the analytic technique with Lyapunov functions, we developed conditions for the global attractor of a unique disease steady-state and the disease free equilibrium. The most eminent refuge to the model is the direct Lyapunov mapping. We investigate the global well-posedness of the mathematical model, determine conditions on Ro for which non-trivial equilibrium states exist, and examine their global stability. We are interested in finding the model’s basic reproductive number, which determines whether the disease dies out or persists in the population. Finally, we consider a series of computational results to verify the theoretical results. The extensive numerical simulations show the dynamics of different population groups over time. The effects of different parameters on the compartments are shown in detail. The findings allude that the dynamics of the system are entirely estimated by the deterministic value Ro. Dhaka Univ. J. Sci. 69(3): 161-170, 2022 (June)
一类非线性时空流行病模型的Lyapunov映射与分析
研究传染病SIR扩散模型的全局渐近性质。利用Lyapunov函数的解析技术,给出了唯一疾病稳态的全局吸引子和无病平衡的条件。该模型最杰出的避难所是直接李亚普诺夫映射。我们研究了数学模型的全局适定性,确定了Ro上存在非平凡平衡态的条件,并检验了它们的全局稳定性。我们感兴趣的是找到模型的基本繁殖数,它决定了疾病是灭绝还是在种群中持续存在。最后,我们考虑了一系列的计算结果来验证理论结果。广泛的数值模拟显示了不同种群随时间的动态变化。详细介绍了不同参数对隔室的影响。研究结果表明,系统的动力学完全由确定性值Ro来估计。达卡大学学报(自然科学版),69(3):161-170,2022 (6)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信