Dispersion dans un écoulement de Stokes

C. Baudet, É. Guyon, Y. Pomeau
{"title":"Dispersion dans un écoulement de Stokes","authors":"C. Baudet, É. Guyon, Y. Pomeau","doi":"10.1051/JPHYSLET:019850046021099100","DOIUrl":null,"url":null,"abstract":"We approach the geometric dispersion effects in a granular porous medium at large Peclet numbers by first considering the distribution of residence times around a single sphere in a uniform applied velocity field U. We get a logarithmic singularity of the dispersion in U Log U which is due to the slow flow near the stagnation points of the flow field. This feature is independent of the flow structure at large distances from the stagnation points. Thus the result can be applied to a random dilute array of spheres (fixed bed) On decrit des effets singuliers de la dispersion geometrique dans un milieu poreux granulaire aux grands nombres de Peclet","PeriodicalId":14822,"journal":{"name":"Journal De Physique Lettres","volume":"67 1","pages":"991-998"},"PeriodicalIF":0.0000,"publicationDate":"1985-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique Lettres","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JPHYSLET:019850046021099100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We approach the geometric dispersion effects in a granular porous medium at large Peclet numbers by first considering the distribution of residence times around a single sphere in a uniform applied velocity field U. We get a logarithmic singularity of the dispersion in U Log U which is due to the slow flow near the stagnation points of the flow field. This feature is independent of the flow structure at large distances from the stagnation points. Thus the result can be applied to a random dilute array of spheres (fixed bed) On decrit des effets singuliers de la dispersion geometrique dans un milieu poreux granulaire aux grands nombres de Peclet
在斯托克斯流中的分散
我们首先考虑均匀施加速度场U中单个球体周围停留时间的分布,从而研究大佩雷数时颗粒状多孔介质中的几何色散效应。我们得到了U中色散的对数奇点,这是由于流场停滞点附近的缓慢流动造成的。这一特性与距驻点较远处的流动结构无关。因此,该结果可应用于随机稀球阵列(固定床)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信