Big Data?: Big Issues Degradation in Longitudinal Data and Implications for Social Sciences

Matthew S. Weber, Hai Nguyen
{"title":"Big Data?: Big Issues Degradation in Longitudinal Data and Implications for Social Sciences","authors":"Matthew S. Weber, Hai Nguyen","doi":"10.1145/2786451.2786482","DOIUrl":null,"url":null,"abstract":"This article analyzes the issue of degradation of data accuracy in large-scale longitudinal data sets. Recent research points to a number of issues with large-scale data, including problems of reliability, accuracy and quality over time. Simultaneously, large-scale data is increasingly being utilized in the social sciences. As scholars work to produce theoretically grounded research utilized \"small-scale\" methods, it is important for researchers to better understand the critical issues associated with the analysis of large-scale data. In order to illustrate the issues associated with this type of research, a case study analysis of archival Internet data is presented focusing on the issues of degradation of data accuracy over time. Suggestions for future studies are given.","PeriodicalId":93136,"journal":{"name":"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2786451.2786482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This article analyzes the issue of degradation of data accuracy in large-scale longitudinal data sets. Recent research points to a number of issues with large-scale data, including problems of reliability, accuracy and quality over time. Simultaneously, large-scale data is increasingly being utilized in the social sciences. As scholars work to produce theoretically grounded research utilized "small-scale" methods, it is important for researchers to better understand the critical issues associated with the analysis of large-scale data. In order to illustrate the issues associated with this type of research, a case study analysis of archival Internet data is presented focusing on the issues of degradation of data accuracy over time. Suggestions for future studies are given.
大数据?纵向数据的大问题退化及其对社会科学的影响
本文分析了大规模纵向数据集中数据精度下降的问题。最近的研究指出了大量数据的一些问题,包括随着时间推移的可靠性、准确性和质量问题。与此同时,大规模数据越来越多地用于社会科学。当学者们利用“小规模”方法进行理论研究时,研究人员更好地理解与大规模数据分析相关的关键问题是很重要的。为了说明与这类研究相关的问题,本文提出了一个档案互联网数据的案例研究分析,重点关注数据准确性随时间退化的问题。并对今后的研究提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信