R. Tamarat, J. Silvestre, N. Kubis, J. Bénessiano, M. Duriez, M. Degasparo, D. Henrion, Bernard I Levy
{"title":"Endothelial Nitric Oxide Synthase Lies Downstream From Angiotensin II–Induced Angiogenesis in Ischemic Hindlimb","authors":"R. Tamarat, J. Silvestre, N. Kubis, J. Bénessiano, M. Duriez, M. Degasparo, D. Henrion, Bernard I Levy","doi":"10.1161/HY0302.104671","DOIUrl":null,"url":null,"abstract":"We assessed the role of angiotensin (Ang) II in ischemia-induced angiogenesis and analyzed the molecular pathways involved in such an effect. Ischemia was produced by unilateral artery femoral occlusion in control, in valsartan-treated (Ang II receptor type I antagonist, 20 mg/kg per day), in Ang II–treated (5 ng/kg per min), and in Ang II and valsartan–treated rats. After 28 days, angiogenesis was assessed by microangiography and capillary density measurement in hindlimbs. The ischemic/nonischemic leg ratio for angiographic score and capillary number increased by 2.6- and 2-fold, respectively, in Ang II–treated rats compared with controls (P <0.01). This was associated with an increase in vascular endothelial growth factor (VEGF; 1.6-fold) and endothelial NO synthase (eNOS; 1.8-fold) protein content within the ischemic leg, assessed by Western blot. Angiotensin type 1 receptor blockade and administration of VEGF neutralizing antibody (2.5 &mgr;g IP, twice a week) in Ang II–treated rats completely prevented such Ang II angiogenic effects. The key role of eNOS was then emphasized by using mice deficient in gene encoding for eNOS. In wild-type mice, Ang II (0.3 mg/kg per min) treatment increased by 1.7- and 1.6-fold the ischemic/nonischemic leg for angiographic score and blood perfusion (assessed by laser Doppler perfusion imaging) ratios, respectively (P <0.01). Conversely, no significant changes were observed in Ang II–treated mice deficient in gene encoding for eNOS. Subhypertensive dose of Ang II enhanced angiogenesis associated with tissue ischemia through angiotensin type 1 receptor activation that involved the VEGF/eNOS-dependent pathway.","PeriodicalId":13233,"journal":{"name":"Hypertension: Journal of the American Heart Association","volume":"28 1","pages":"830-835"},"PeriodicalIF":0.0000,"publicationDate":"2002-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"84","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hypertension: Journal of the American Heart Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/HY0302.104671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 84
Abstract
We assessed the role of angiotensin (Ang) II in ischemia-induced angiogenesis and analyzed the molecular pathways involved in such an effect. Ischemia was produced by unilateral artery femoral occlusion in control, in valsartan-treated (Ang II receptor type I antagonist, 20 mg/kg per day), in Ang II–treated (5 ng/kg per min), and in Ang II and valsartan–treated rats. After 28 days, angiogenesis was assessed by microangiography and capillary density measurement in hindlimbs. The ischemic/nonischemic leg ratio for angiographic score and capillary number increased by 2.6- and 2-fold, respectively, in Ang II–treated rats compared with controls (P <0.01). This was associated with an increase in vascular endothelial growth factor (VEGF; 1.6-fold) and endothelial NO synthase (eNOS; 1.8-fold) protein content within the ischemic leg, assessed by Western blot. Angiotensin type 1 receptor blockade and administration of VEGF neutralizing antibody (2.5 &mgr;g IP, twice a week) in Ang II–treated rats completely prevented such Ang II angiogenic effects. The key role of eNOS was then emphasized by using mice deficient in gene encoding for eNOS. In wild-type mice, Ang II (0.3 mg/kg per min) treatment increased by 1.7- and 1.6-fold the ischemic/nonischemic leg for angiographic score and blood perfusion (assessed by laser Doppler perfusion imaging) ratios, respectively (P <0.01). Conversely, no significant changes were observed in Ang II–treated mice deficient in gene encoding for eNOS. Subhypertensive dose of Ang II enhanced angiogenesis associated with tissue ischemia through angiotensin type 1 receptor activation that involved the VEGF/eNOS-dependent pathway.