Bypasses for rectangular diagrams. A proof of the Jones conjecture and related questions

Q2 Mathematics
I. Dynnikov, M. Prasolov
{"title":"Bypasses for rectangular diagrams. A proof of the Jones conjecture and related questions","authors":"I. Dynnikov, M. Prasolov","doi":"10.1090/S0077-1554-2014-00210-7","DOIUrl":null,"url":null,"abstract":"In the present paper a criteria for a rectangular diagram to admit a simplification is given in terms of Legendrian knots. It is shown that there are two types of simplifications which are mutually independent in a sense. It is shown that a minimal rectangular diagram maximizes the Thurston-Bennequin number for the corresponding Legendrian links. Jones' conjecture about the invariance of the algebraic number of intersections of a minimal braid representing a fixed link type is proved. A new proof of the monotonic simplification theorem for the unknot is given.","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":"208 1","pages":"97-144"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/S0077-1554-2014-00210-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 42

Abstract

In the present paper a criteria for a rectangular diagram to admit a simplification is given in terms of Legendrian knots. It is shown that there are two types of simplifications which are mutually independent in a sense. It is shown that a minimal rectangular diagram maximizes the Thurston-Bennequin number for the corresponding Legendrian links. Jones' conjecture about the invariance of the algebraic number of intersections of a minimal braid representing a fixed link type is proved. A new proof of the monotonic simplification theorem for the unknot is given.
矩形图的旁路。琼斯猜想及相关问题的证明
本文用Legendrian节给出了矩形图的化简准则。结果表明,有两种简化形式在某种意义上是相互独立的。证明了最小矩形图使相应的Legendrian连杆的Thurston-Bennequin数最大化。证明了代表固定连杆类型的最小辫状体的交点代数数不变性的Jones猜想。给出了解结单调化简定理的一个新的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transactions of the Moscow Mathematical Society
Transactions of the Moscow Mathematical Society Mathematics-Mathematics (miscellaneous)
自引率
0.00%
发文量
19
期刊介绍: This journal, a translation of Trudy Moskovskogo Matematicheskogo Obshchestva, contains the results of original research in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信