J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wilson, N. Borkar, G. Schrom, Fabric Pailet, Shailendra Jain, Tiju Jacob, Satish Yada, Sraven Marella, Praveen Salihundam, V. Erraguntla, M. Konow, Michael Riepen, G. Droege, Joerg Lindemann, M. Gries, T. Apel, K. Henriss, Tor Lund-Larsen, Sebastian Steibl, S. Borkar, V. De, R. V. D. Wijngaart, T. Mattson
{"title":"A 48-Core IA-32 message-passing processor with DVFS in 45nm CMOS","authors":"J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wilson, N. Borkar, G. Schrom, Fabric Pailet, Shailendra Jain, Tiju Jacob, Satish Yada, Sraven Marella, Praveen Salihundam, V. Erraguntla, M. Konow, Michael Riepen, G. Droege, Joerg Lindemann, M. Gries, T. Apel, K. Henriss, Tor Lund-Larsen, Sebastian Steibl, S. Borkar, V. De, R. V. D. Wijngaart, T. Mattson","doi":"10.1109/ISSCC.2010.5434077","DOIUrl":null,"url":null,"abstract":"Current developments in microprocessor design favor increased core counts over frequency scaling to improve processor performance and energy efficiency. Coupling this architectural trend with a message-passing protocol helps realize a data-center-on-a-die. The prototype chip (Figs. 5.7.1 and 5.7.7) described in this paper integrates 48 Pentium™ class IA-32 cores [1] on a 6×4 2D-mesh network of tiled core clusters with high-speed I/Os on the periphery. The chip contains 1.3B transistors. Each core has a private 256KB L2 cache (12MB total on-die) and is optimized to support a message-passing-programming model whereby cores communicate through shared memory. A 16KB message-passing buffer (MPB) is present in every tile, giving a total of 384KB on-die shared memory, for increased performance. Power is kept at a minimum by transmitting dynamic, fine-grained voltage-change commands over the network to an on-die voltage-regulator controller (VRC). Further power savings are achieved through active frequency scaling at the tile granularity. Memory accesses are distributed over four on-die DDR3 controllers for an aggregate peak memory bandwidth of 21GB/s at 4× burst. Additionally, an 8-byte bidirectional system interface (SIF) provides 6.4GB/s of I/O bandwidth. The die area is 567mm2 and is implemented in 45nm high-к metal-gate CMOS [2].","PeriodicalId":6418,"journal":{"name":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","volume":"45 1","pages":"108-109"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"708","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2010.5434077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 708
Abstract
Current developments in microprocessor design favor increased core counts over frequency scaling to improve processor performance and energy efficiency. Coupling this architectural trend with a message-passing protocol helps realize a data-center-on-a-die. The prototype chip (Figs. 5.7.1 and 5.7.7) described in this paper integrates 48 Pentium™ class IA-32 cores [1] on a 6×4 2D-mesh network of tiled core clusters with high-speed I/Os on the periphery. The chip contains 1.3B transistors. Each core has a private 256KB L2 cache (12MB total on-die) and is optimized to support a message-passing-programming model whereby cores communicate through shared memory. A 16KB message-passing buffer (MPB) is present in every tile, giving a total of 384KB on-die shared memory, for increased performance. Power is kept at a minimum by transmitting dynamic, fine-grained voltage-change commands over the network to an on-die voltage-regulator controller (VRC). Further power savings are achieved through active frequency scaling at the tile granularity. Memory accesses are distributed over four on-die DDR3 controllers for an aggregate peak memory bandwidth of 21GB/s at 4× burst. Additionally, an 8-byte bidirectional system interface (SIF) provides 6.4GB/s of I/O bandwidth. The die area is 567mm2 and is implemented in 45nm high-к metal-gate CMOS [2].