Kiran Gangarapu, Julakanti Venu, Mulagada Monja, T. Gouthami, V. Bakshi
{"title":"Identification of degradation products of saquinavir mesylate by LC-MS: Molecular docking and in silico ADME prediction studies","authors":"Kiran Gangarapu, Julakanti Venu, Mulagada Monja, T. Gouthami, V. Bakshi","doi":"10.3390/ecmc-4-05627","DOIUrl":null,"url":null,"abstract":"Saquinavir mesylate (SQM) is subjected to forced degradation under conditions of hydrolysis, oxidation, dry heat, photolysis as recommended by International conference on Harmonization guideline Q1A (R2). In total, (I-V) degradation products (DPs) were formed in acidic hydrolytic, alkaline hydrolytic and oxidative conditions. Successful separation of SQM and its DPs was achieved on C18(4.6mm×75mm) 3.5μg column at ambient temperature (30 ̊C) with mobile phase A (10mM ammonium acetate in water), B100% acetonitrile at 2.0ml/min flow rate in the gradient mode. The injection volume was fixed at 20μl and detection wavelength at 238nm. The HPLC method was found to be linear, accurate, precise, sensitive, specific, rugged, and robust for quantification of SQM as well as degradation products. The major degradation products (DP-1) formed in hydrolytic acid conditions was identified and characterized by LC-MS/MS and proposed the fragmentation patterns by comparing with SQM. Further, DP-1 were isolated through column chromatography and analyzed by 1H NMR. In Silico molecular docking studies on HIV protease (PDB: 4qgi) for DPs and SQM was estimated and found to be pharmacologically inactive than SQM. Prediction of Toxicity and ADME properities were performed for DP-1 and SQM and found to less toxic.","PeriodicalId":20450,"journal":{"name":"Proceedings of 4th International Electronic Conference on Medicinal Chemistry","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 4th International Electronic Conference on Medicinal Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ecmc-4-05627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Saquinavir mesylate (SQM) is subjected to forced degradation under conditions of hydrolysis, oxidation, dry heat, photolysis as recommended by International conference on Harmonization guideline Q1A (R2). In total, (I-V) degradation products (DPs) were formed in acidic hydrolytic, alkaline hydrolytic and oxidative conditions. Successful separation of SQM and its DPs was achieved on C18(4.6mm×75mm) 3.5μg column at ambient temperature (30 ̊C) with mobile phase A (10mM ammonium acetate in water), B100% acetonitrile at 2.0ml/min flow rate in the gradient mode. The injection volume was fixed at 20μl and detection wavelength at 238nm. The HPLC method was found to be linear, accurate, precise, sensitive, specific, rugged, and robust for quantification of SQM as well as degradation products. The major degradation products (DP-1) formed in hydrolytic acid conditions was identified and characterized by LC-MS/MS and proposed the fragmentation patterns by comparing with SQM. Further, DP-1 were isolated through column chromatography and analyzed by 1H NMR. In Silico molecular docking studies on HIV protease (PDB: 4qgi) for DPs and SQM was estimated and found to be pharmacologically inactive than SQM. Prediction of Toxicity and ADME properities were performed for DP-1 and SQM and found to less toxic.