Experimental and Numerical Studies on Flexural Behavior of GGBS-Based Geopolymer Ferrocement Beams

Q3 Engineering
Taha A. El-Sayed, A. Deifalla, Y. Shaheen, Hossam H. Ahmed, Aya K. Youssef
{"title":"Experimental and Numerical Studies on Flexural Behavior of GGBS-Based Geopolymer Ferrocement Beams","authors":"Taha A. El-Sayed, A. Deifalla, Y. Shaheen, Hossam H. Ahmed, Aya K. Youssef","doi":"10.28991/cej-2023-09-03-010","DOIUrl":null,"url":null,"abstract":"The ferrocement structural concept has been shown to offer exceptional mechanical properties in terms of toughness, fracture control, and impact resistance, which are achieved by tight spacing and homogeneous reinforcement dispersion within the matrix. The flexure behavior of geopolymer ferrocement beams under axial flexural stress is being explored experimentally and computationally in this present work. Under flexural loads, nine samples of geopolymer ferrocement beams 150 mm thick, 75 mm wide, and 1700 mm long were tested to failure. The reinforcing steel bars and wire meshes, as well as the quantity of wire mesh layers, were the key factors studied. The initial crack load, ultimate failure load, and mid-span deflection with various loading phases, cracking patterns, energy absorption, and ductility index were all studied in relation to the behavior. In terms of carrying capacity, absorbing energy, and ductility, welded steel wire mesh beams fared better than other materials. Using ANSYS-19 software, nonlinear finite element analysis (NLFEA) was carried out to demonstrate the behavior of composite ferrocement geopolymer beams. The ensuing experimental and numerical data demonstrated that the degree of experimental value estimation supplied by the FE simulations was sufficient. It is crucial to demonstrate that, in comparison to control specimens, the increase in strength of specimens reinforced with tensar meshes was reduced by around 15%. Doi: 10.28991/CEJ-2023-09-03-010 Full Text: PDF","PeriodicalId":53612,"journal":{"name":"Open Civil Engineering Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Civil Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/cej-2023-09-03-010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

Abstract

The ferrocement structural concept has been shown to offer exceptional mechanical properties in terms of toughness, fracture control, and impact resistance, which are achieved by tight spacing and homogeneous reinforcement dispersion within the matrix. The flexure behavior of geopolymer ferrocement beams under axial flexural stress is being explored experimentally and computationally in this present work. Under flexural loads, nine samples of geopolymer ferrocement beams 150 mm thick, 75 mm wide, and 1700 mm long were tested to failure. The reinforcing steel bars and wire meshes, as well as the quantity of wire mesh layers, were the key factors studied. The initial crack load, ultimate failure load, and mid-span deflection with various loading phases, cracking patterns, energy absorption, and ductility index were all studied in relation to the behavior. In terms of carrying capacity, absorbing energy, and ductility, welded steel wire mesh beams fared better than other materials. Using ANSYS-19 software, nonlinear finite element analysis (NLFEA) was carried out to demonstrate the behavior of composite ferrocement geopolymer beams. The ensuing experimental and numerical data demonstrated that the degree of experimental value estimation supplied by the FE simulations was sufficient. It is crucial to demonstrate that, in comparison to control specimens, the increase in strength of specimens reinforced with tensar meshes was reduced by around 15%. Doi: 10.28991/CEJ-2023-09-03-010 Full Text: PDF
基于ggbs的地聚合物铁层梁受弯性能的试验与数值研究
铁层结构概念已被证明在韧性、断裂控制和抗冲击性方面具有卓越的机械性能,这是通过紧密的间距和均匀的增强分散在基体中实现的。本文从实验和计算两方面探讨了地聚合物铁板梁在轴向弯曲应力作用下的弯曲行为。在弯曲荷载作用下,对9根厚150mm、宽75mm、长1700mm的地聚合物铁板梁试件进行了破坏试验。钢筋和网层数以及网层数是研究的关键因素。研究了不同加载阶段的初始开裂荷载、极限破坏荷载、跨中挠度、开裂形态、能量吸收和延性指标与桥梁性能的关系。在承载能力、吸收能量和延展性方面,焊接钢丝网梁比其他材料表现得更好。利用ANSYS-19软件对复合铁层地聚合物梁进行了非线性有限元分析(NLFEA)。随后的实验和数值数据表明,有限元模拟提供的实验值估计程度是充分的。重要的是要证明,与控制样本相比,用张sar网格加固的样本的强度增加减少了约15%。Doi: 10.28991/CEJ-2023-09-03-010全文:PDF
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Civil Engineering Journal
Open Civil Engineering Journal Engineering-Civil and Structural Engineering
CiteScore
1.90
自引率
0.00%
发文量
17
期刊介绍: The Open Civil Engineering Journal is an Open Access online journal which publishes research, reviews/mini-reviews, letter articles and guest edited single topic issues in all areas of civil engineering. The Open Civil Engineering Journal, a peer-reviewed journal, is an important and reliable source of current information on developments in civil engineering. The topics covered in the journal include (but not limited to) concrete structures, construction materials, structural mechanics, soil mechanics, foundation engineering, offshore geotechnics, water resources, hydraulics, horology, coastal engineering, river engineering, ocean modeling, fluid-solid-structure interactions, offshore engineering, marine structures, constructional management and other civil engineering relevant areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信