Evaluation of anisotropic non-coincident g2, A2, D, P and gn2 from EPR and endor data by the method of least-squares fitting

Sushil K. Misra
{"title":"Evaluation of anisotropic non-coincident g2, A2, D, P and gn2 from EPR and endor data by the method of least-squares fitting","authors":"Sushil K. Misra","doi":"10.1016/0378-4363(88)90297-5","DOIUrl":null,"url":null,"abstract":"<div><p>Details of a rigorous least-squares (LSF) procedure for the evaluation of the components of non-coincident tensors <span><math><mtext>g</mtext><msup><mi></mi><mn>2</mn></msup></math></span>, <span><math><mtext>A</mtext><msup><mi></mi><mn>2</mn></msup></math></span>, <span><math><mtext>D</mtext></math></span>, <span><math><mtext>P</mtext></math></span> and <span><math><mtext>g</mtext><msub><mi></mi><mn>n</mn></msub><msup><mi></mi><mn>2</mn></msup></math></span> using eigenvalues calculated tt second-order in perturbation for electron-nuclear spin-coupled systems are given. The complexities associated with the presence of non-coincident tensors in the spin Hamiltonian are discussed. Details are provided of how the components of the various tensors can be evaluated by choosing either special, or arbitrary, coordinate axes for their descriptions. The procedure is illustrated by application to the X-band EPR data obtained at room temperature for VO<sup>2+</sup>-doped K<sub>2</sub>C<sub>2</sub>O<sub>4</sub>·H<sub>2</sub>O single crystal. It is found that, for this case, the LSF procedure, based on the use of second-order eigenvalues, as described here, yields the χ<sup>2</sup> value, representing the goodness of fit, one-fortieth that found employing the LSF procedure, based on the use of first-order eigenvalues.</p></div>","PeriodicalId":101023,"journal":{"name":"Physica B+C","volume":"151 3","pages":"Pages 433-452"},"PeriodicalIF":0.0000,"publicationDate":"1988-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0378-4363(88)90297-5","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B+C","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0378436388902975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Details of a rigorous least-squares (LSF) procedure for the evaluation of the components of non-coincident tensors g2, A2, D, P and gn2 using eigenvalues calculated tt second-order in perturbation for electron-nuclear spin-coupled systems are given. The complexities associated with the presence of non-coincident tensors in the spin Hamiltonian are discussed. Details are provided of how the components of the various tensors can be evaluated by choosing either special, or arbitrary, coordinate axes for their descriptions. The procedure is illustrated by application to the X-band EPR data obtained at room temperature for VO2+-doped K2C2O4·H2O single crystal. It is found that, for this case, the LSF procedure, based on the use of second-order eigenvalues, as described here, yields the χ2 value, representing the goodness of fit, one-fortieth that found employing the LSF procedure, based on the use of first-order eigenvalues.

用最小二乘拟合方法评价EPR和endor数据的各向异性非重合g2、A2、D、P和gn2
给出了用二阶摄动下计算的特征值计算电子-核自旋耦合系统非重合张量g2、A2、D、P和gn2分量的严格最小二乘(LSF)方法。讨论了自旋哈密顿量中存在非重合张量的复杂性。详细介绍了如何通过选择特殊的或任意的坐标轴来描述各种张量的分量。并以室温下掺杂VO2+的K2C2O4·H2O单晶的x波段EPR数据为例进行了说明。发现,在这种情况下,基于使用二阶特征值的LSF过程,如这里所述,产生χ2值,表示拟合优度,基于使用一阶特征值,使用LSF过程发现的四十分之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信