On sign-changing solutions for resonant (p,q)-Laplace equations

V. Bobkov, Mieko Tanaka
{"title":"On sign-changing solutions for resonant (p,q)-Laplace equations","authors":"V. Bobkov, Mieko Tanaka","doi":"10.7153/dea-2018-10-12","DOIUrl":null,"url":null,"abstract":". We provide two existence results for sign-changing solutions to the Dirichlet problem for the family of equations − ∆ p u − ∆ q u = α | u | p − 2 u + β | u | q − 2 u , where 1 < q < p and α , β are parameters. First, we show the existence in the resonant case α ∈ σ ( − ∆ p ) for sufficiently large β , thereby generalizing previously known results. The obtained solutions have negative energy. Second, we show the existence for any β > λ 1 ( q ) and sufficiently large α under an additional nonresonant assumption, where λ 1 ( q ) is the first eigenvalue of the q -Laplacian. The obtained solutions have positive energy.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"1 1","pages":"197-208"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/dea-2018-10-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. We provide two existence results for sign-changing solutions to the Dirichlet problem for the family of equations − ∆ p u − ∆ q u = α | u | p − 2 u + β | u | q − 2 u , where 1 < q < p and α , β are parameters. First, we show the existence in the resonant case α ∈ σ ( − ∆ p ) for sufficiently large β , thereby generalizing previously known results. The obtained solutions have negative energy. Second, we show the existence for any β > λ 1 ( q ) and sufficiently large α under an additional nonresonant assumption, where λ 1 ( q ) is the first eigenvalue of the q -Laplacian. The obtained solutions have positive energy.
共振(p,q)-拉普拉斯方程的变符号解
。给出了一类方程(-∆p u -∆qu = α | u | p - 2u + β | u | q - 2u)的Dirichlet问题变符号解的两个存在性结果,其中1 < q < p和α, β为参数。首先,我们证明了足够大的β在共振情况下α∈σ(−∆p)的存在性,从而推广了先前已知的结果。得到的解具有负能量。其次,在一个附加的非共振假设下,我们证明了任意β > λ 1 (q)和足够大的α的存在性,其中λ 1 (q)是q -拉普拉斯算子的第一特征值。得到的解具有正能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信