Active deep learning for segmentation of industrial CT data

IF 0.8 4区 工程技术 Q4 INSTRUMENTS & INSTRUMENTATION
Markus Michen, M. Rehak, U. Hassler
{"title":"Active deep learning for segmentation of industrial CT data","authors":"Markus Michen, M. Rehak, U. Hassler","doi":"10.1515/teme-2023-0047","DOIUrl":null,"url":null,"abstract":"Abstract This contribution proposes an approach and the respective tool that uses Active Deep Learning (ADL) to segment industrial three-dimensional computed tomography (3D CT) data. The general approach is application-independent and includes an iterative human-in-the-loop Active Learning (AL) process that produces labeled training data and a trained Deep Learning (DL) model for semantic segmentation. The model is continuously improved during iterations such that manual labeling effort is reduced. In addition, the user can minimize user interaction with the aid of a random forest-based classifier and focus on unclear or invalid segmentation results. The complete workflow is implemented within one single Python tool. The approach is demonstrated in detail for two industrial use cases: Single fiber analysis and plant segmentation. For plant segmentation, the method is compared to a baseline and a classic image processing algorithm.","PeriodicalId":56086,"journal":{"name":"Tm-Technisches Messen","volume":"7 1","pages":"500 - 511"},"PeriodicalIF":0.8000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tm-Technisches Messen","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/teme-2023-0047","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This contribution proposes an approach and the respective tool that uses Active Deep Learning (ADL) to segment industrial three-dimensional computed tomography (3D CT) data. The general approach is application-independent and includes an iterative human-in-the-loop Active Learning (AL) process that produces labeled training data and a trained Deep Learning (DL) model for semantic segmentation. The model is continuously improved during iterations such that manual labeling effort is reduced. In addition, the user can minimize user interaction with the aid of a random forest-based classifier and focus on unclear or invalid segmentation results. The complete workflow is implemented within one single Python tool. The approach is demonstrated in detail for two industrial use cases: Single fiber analysis and plant segmentation. For plant segmentation, the method is compared to a baseline and a classic image processing algorithm.
基于主动深度学习的工业CT数据分割
本文提出了一种使用主动深度学习(ADL)分割工业三维计算机断层扫描(3D CT)数据的方法和相应的工具。一般的方法是独立于应用程序的,包括一个迭代的人在环主动学习(AL)过程,该过程产生标记的训练数据和一个训练好的深度学习(DL)模型,用于语义分割。该模型在迭代过程中不断改进,从而减少了手工标记工作。此外,用户可以借助基于随机森林的分类器减少用户交互,并专注于不明确或无效的分割结果。完整的工作流在一个Python工具中实现。该方法详细演示了两个工业用例:单纤维分析和植物分割。对于植物分割,将该方法与基线和经典图像处理算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tm-Technisches Messen
Tm-Technisches Messen 工程技术-仪器仪表
CiteScore
1.70
自引率
20.00%
发文量
105
审稿时长
6-12 weeks
期刊介绍: The journal promotes dialogue between the developers of application-oriented sensors, measurement systems, and measurement methods and the manufacturers and measurement technologists who use them. Topics The manufacture and characteristics of new sensors for measurement technology in the industrial sector New measurement methods Hardware and software based processing and analysis of measurement signals to obtain measurement values The outcomes of employing new measurement systems and methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信