A 28fJ/conv-step CT ΔΣ modulator with 78dB DR and 18MHz BW in 28nm CMOS using a highly digital multibit quantizer

Yun-Shiang Shu, Jui-Yuan Tsai, Ping-Yu Chen, Tien-Yu Lo, Pao-Cheng Chiu
{"title":"A 28fJ/conv-step CT ΔΣ modulator with 78dB DR and 18MHz BW in 28nm CMOS using a highly digital multibit quantizer","authors":"Yun-Shiang Shu, Jui-Yuan Tsai, Ping-Yu Chen, Tien-Yu Lo, Pao-Cheng Chiu","doi":"10.1109/ISSCC.2013.6487729","DOIUrl":null,"url":null,"abstract":"Recently reported continuous-time (CT) ΔΣ modulators with opamp bandwidth compensation and high-order single-opamp integrators have achieved FoM values well below 100fJ/conv-step [1-3]. With loop-filter power greatly reduced, power dissipation in multibit quantizers becomes especially significant. For example, the quantizer in [2] accounts for 2.8mW of 8.5mW total power dissipation. Also, the input capacitance of multibit quantizers and the output parasitics of excess loop delay (ELD) compensation DACs result in increased power demand for summing circuits. To minimize power dissipation, two recent works use 1b quantizers with FIR DACs and replace ELD compensation DACs with a DAC followed by analog filter [3] or with feedback to the pre-amplifier [4]. ELD compensation may also be realized using digital logic following the quantizer [5]. This paper presents a low-power solution based on a highly digital multibit quantizer with embedded feedback to compensate for finite opamp bandwidth along with ELD. The quantizer consumes less than 10% of the total power and simplifies the analog circuits into a single DAC plus a feedforward loop filter with relaxed opamp requirements. Digital correction at the modulator output suggested by early work [6] is employed to shape DAC mismatch with the inherent noise transfer function (NTF) and to further relax circuit constraints. These digitally assisted techniques enable a CT ΔΣ modulator to achieve an FoM below 28fJ/conv-step.","PeriodicalId":6378,"journal":{"name":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","volume":"65 1","pages":"268-269"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"92","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2013.6487729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 92

Abstract

Recently reported continuous-time (CT) ΔΣ modulators with opamp bandwidth compensation and high-order single-opamp integrators have achieved FoM values well below 100fJ/conv-step [1-3]. With loop-filter power greatly reduced, power dissipation in multibit quantizers becomes especially significant. For example, the quantizer in [2] accounts for 2.8mW of 8.5mW total power dissipation. Also, the input capacitance of multibit quantizers and the output parasitics of excess loop delay (ELD) compensation DACs result in increased power demand for summing circuits. To minimize power dissipation, two recent works use 1b quantizers with FIR DACs and replace ELD compensation DACs with a DAC followed by analog filter [3] or with feedback to the pre-amplifier [4]. ELD compensation may also be realized using digital logic following the quantizer [5]. This paper presents a low-power solution based on a highly digital multibit quantizer with embedded feedback to compensate for finite opamp bandwidth along with ELD. The quantizer consumes less than 10% of the total power and simplifies the analog circuits into a single DAC plus a feedforward loop filter with relaxed opamp requirements. Digital correction at the modulator output suggested by early work [6] is employed to shape DAC mismatch with the inherent noise transfer function (NTF) and to further relax circuit constraints. These digitally assisted techniques enable a CT ΔΣ modulator to achieve an FoM below 28fJ/conv-step.
28fJ/反步CT ΔΣ调制器,78dB DR, 18MHz BW, 28nm CMOS,采用高数字多位量化器
最近报道的带运放大器带宽补偿和高阶单运放大器积分器的连续时间(CT) ΔΣ调制器的FoM值远低于100fJ/ convstep[1-3]。随着环路滤波器功率的大大降低,多位量化器的功耗变得尤为显著。例如,[2]中的量化器在总功耗8.5mW中占2.8mW。此外,多位量化器的输入电容和过量环路延迟(ELD)补偿dac的输出寄生导致求和电路的功率需求增加。为了最大限度地减少功耗,最近的两项工作使用1b量化器和FIR DAC,并用DAC后的模拟滤波器[3]或对前置放大器的反馈[4]取代ELD补偿DAC。ELD补偿也可以通过跟随量化器的数字逻辑来实现[5]。本文提出了一种基于嵌入式反馈的高数字多位量化器的低功耗解决方案,以补偿有限的运放带宽和ELD。量化器的功耗低于总功率的10%,并将模拟电路简化为单个DAC加一个前馈环路滤波器,对运放的要求较低。早期工作[6]建议在调制器输出处进行数字校正,以形成DAC与固有噪声传递函数(NTF)的失配,并进一步放宽电路约束。这些数字辅助技术使CT ΔΣ调制器能够实现低于28fJ/反步的FoM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信