Bias in nearest-neighbor hazard estimation

R. Weißbach, H. Dette
{"title":"Bias in nearest-neighbor hazard estimation","authors":"R. Weißbach, H. Dette","doi":"10.17877/DE290R-14464","DOIUrl":null,"url":null,"abstract":"In nonparametric curve estimation, the smoothing parameter is critical for performance. In order to estimate the hazard rate, we compare nearest neighbor selectors that minimize the quadratic, the Kullback-Leibler, and the uniform loss. These measures result in a rule of thumb, a cross-validation, and a plug-in selector. A Monte Carlo simulation within the three-parameter exponentiated Weibull distribution indicates that a counter-factual normal distribution, as an input to the selector, does provide a good rule of thumb. If bias is the main concern, minimizing the uniform loss yields the best results, but at the cost of very high variability. Cross-validation has a similar bias to the rule of thumb, but also with high variability.","PeriodicalId":10841,"journal":{"name":"CTIT technical reports series","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2008-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CTIT technical reports series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17877/DE290R-14464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In nonparametric curve estimation, the smoothing parameter is critical for performance. In order to estimate the hazard rate, we compare nearest neighbor selectors that minimize the quadratic, the Kullback-Leibler, and the uniform loss. These measures result in a rule of thumb, a cross-validation, and a plug-in selector. A Monte Carlo simulation within the three-parameter exponentiated Weibull distribution indicates that a counter-factual normal distribution, as an input to the selector, does provide a good rule of thumb. If bias is the main concern, minimizing the uniform loss yields the best results, but at the cost of very high variability. Cross-validation has a similar bias to the rule of thumb, but also with high variability.
最近邻风险估计中的偏差
在非参数曲线估计中,平滑参数对曲线的估计性能至关重要。为了估计风险率,我们比较了最小化二次元、Kullback-Leibler和均匀损失的最近邻选择器。这些度量产生了经验法则、交叉验证和插件选择器。在三参数指数威布尔分布内的蒙特卡罗模拟表明,反事实正态分布作为选择器的输入,确实提供了一个很好的经验法则。如果偏差是主要考虑的问题,那么最小化均匀损失会产生最好的结果,但代价是非常高的可变性。交叉验证与经验法则有类似的偏差,但也有很高的可变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信