The magnetic Scott correction for relativistic matter at criticality

Gonzalo A. Bley, S. Fournais
{"title":"The magnetic Scott correction for relativistic matter at criticality","authors":"Gonzalo A. Bley, S. Fournais","doi":"10.1063/5.0007903","DOIUrl":null,"url":null,"abstract":"We provide a proof of the first correction to the leading asymptotics of the minimal energy of pseudo-relativistic molecules in the presence of magnetic fields, the so-called \"relativistic Scott correction\", when $\\max{Z_k\\alpha} \\leq 2/\\pi$, where $Z_k$ is the charge of the $k$-th nucleus and $\\alpha$ is the fine structure constant. Our theorem extends a previous result by Erdős, Fournais, and Solovej to the critical constant $2/\\pi$ in the relativistic Hardy inequality $|p| - \\frac{2}{\\pi |x|} \\geq 0$.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0007903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a proof of the first correction to the leading asymptotics of the minimal energy of pseudo-relativistic molecules in the presence of magnetic fields, the so-called "relativistic Scott correction", when $\max{Z_k\alpha} \leq 2/\pi$, where $Z_k$ is the charge of the $k$-th nucleus and $\alpha$ is the fine structure constant. Our theorem extends a previous result by Erdős, Fournais, and Solovej to the critical constant $2/\pi$ in the relativistic Hardy inequality $|p| - \frac{2}{\pi |x|} \geq 0$.
临界相对论性物质的磁斯科特校正
我们提供了在磁场存在下伪相对论分子的最小能量的领先渐近性的第一个校正的证明,即所谓的“相对论斯科特校正”,当$\max{Z_k\alpha} \leq 2/\pi$,其中$Z_k$是$k$ -核的电荷,$\alpha$是精细结构常数。我们的定理将Erdős, Fournais和Solovej先前的结果扩展到相对论Hardy不等式$|p| - \frac{2}{\pi |x|} \geq 0$中的临界常数$2/\pi$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信