The Betz limit and the corresponding thermodynamic limit

IF 1.5 Q4 ENERGY & FUELS
P. Coelho
{"title":"The Betz limit and the corresponding thermodynamic limit","authors":"P. Coelho","doi":"10.1177/0309524X221130109","DOIUrl":null,"url":null,"abstract":"The Betz’s limit for the maximum efficiency of an ideal wind turbine imposes a maximum value of about 60% on the conversion of the kinetic energy of an airflow into work. In this paper, we analyze the reason for this value because, from a thermodynamic point of view, it can be 100%. The present work explains the reason for this difference, since it appears to be relevant from a didactic point of view. However, from a practical point of view, the Betz’s limit does not affect in any way the more useful and widespread expression for calculating the ideal maximum power of a wind turbine, which is at the origin of the referred limit. Complementarily, two approaches for the calculation of the theoretical maximum efficiency, in line with thermodynamics, are also presented in this work.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"87 1","pages":"491 - 496"},"PeriodicalIF":1.5000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524X221130109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

Abstract

The Betz’s limit for the maximum efficiency of an ideal wind turbine imposes a maximum value of about 60% on the conversion of the kinetic energy of an airflow into work. In this paper, we analyze the reason for this value because, from a thermodynamic point of view, it can be 100%. The present work explains the reason for this difference, since it appears to be relevant from a didactic point of view. However, from a practical point of view, the Betz’s limit does not affect in any way the more useful and widespread expression for calculating the ideal maximum power of a wind turbine, which is at the origin of the referred limit. Complementarily, two approaches for the calculation of the theoretical maximum efficiency, in line with thermodynamics, are also presented in this work.
贝茨极限和相应的热力学极限
理想的风力涡轮机的最大效率的贝茨极限施加了大约60%的气流动能转化为功的最大值。在本文中,我们分析了这个值的原因,因为从热力学的角度来看,它可以是100%。目前的工作解释了这种差异的原因,因为它似乎是相关的从教学的角度来看。然而,从实际的角度来看,贝茨极限在任何方面都不会影响计算风力涡轮机理想最大功率的更有用和更广泛的表达式,这是在所提到的极限的原点。此外,本文还提出了两种计算理论最大效率的方法,与热力学相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wind Engineering
Wind Engineering ENERGY & FUELS-
CiteScore
4.00
自引率
13.30%
发文量
81
期刊介绍: Having been in continuous publication since 1977, Wind Engineering is the oldest and most authoritative English language journal devoted entirely to the technology of wind energy. Under the direction of a distinguished editor and editorial board, Wind Engineering appears bimonthly with fully refereed contributions from active figures in the field, book notices, and summaries of the more interesting papers from other sources. Papers are published in Wind Engineering on: the aerodynamics of rotors and blades; machine subsystems and components; design; test programmes; power generation and transmission; measuring and recording techniques; installations and applications; and economic, environmental and legal aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信