Exact and approximate determination of the Pareto set using minimal correction subsets

Andreia P. Guerreiro, João Cortes, D. Vanderpooten, C. Bazgan, I. Lynce, Vasco M. Manquinho, J. Figueira
{"title":"Exact and approximate determination of the Pareto set using minimal correction subsets","authors":"Andreia P. Guerreiro, João Cortes, D. Vanderpooten, C. Bazgan, I. Lynce, Vasco M. Manquinho, J. Figueira","doi":"10.48550/arXiv.2204.06908","DOIUrl":null,"url":null,"abstract":"Recently, it has been shown that the enumeration of Minimal Correction Subsets (MCS) of Boolean formulas allows solving Multi-Objective Boolean Optimization (MOBO) formulations. However, a major drawback of this approach is that most MCSs do not correspond to Pareto-optimal solutions. In fact, one can only know that a given MCS corresponds to a Pareto-optimal solution when all MCSs are enumerated. Moreover, if it is not possible to enumerate all MCSs, then there is no guarantee of the quality of the approximation of the Pareto frontier. This paper extends the state of the art for solving MOBO using MCSs. First, we show that it is possible to use MCS enumeration to solve MOBO problems such that each MCS necessarily corresponds to a Pareto-optimal solution. Additionally, we also propose two new algorithms that can find a (1 + {\\varepsilon})-approximation of the Pareto frontier using MCS enumeration. Experimental results in several benchmark sets show that the newly proposed algorithms allow finding better approximations of the Pareto frontier than state-of-the-art algorithms, and with guaranteed approximation ratios.","PeriodicalId":10582,"journal":{"name":"Comput. Oper. Res.","volume":"41 2 1","pages":"106153"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.06908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recently, it has been shown that the enumeration of Minimal Correction Subsets (MCS) of Boolean formulas allows solving Multi-Objective Boolean Optimization (MOBO) formulations. However, a major drawback of this approach is that most MCSs do not correspond to Pareto-optimal solutions. In fact, one can only know that a given MCS corresponds to a Pareto-optimal solution when all MCSs are enumerated. Moreover, if it is not possible to enumerate all MCSs, then there is no guarantee of the quality of the approximation of the Pareto frontier. This paper extends the state of the art for solving MOBO using MCSs. First, we show that it is possible to use MCS enumeration to solve MOBO problems such that each MCS necessarily corresponds to a Pareto-optimal solution. Additionally, we also propose two new algorithms that can find a (1 + {\varepsilon})-approximation of the Pareto frontier using MCS enumeration. Experimental results in several benchmark sets show that the newly proposed algorithms allow finding better approximations of the Pareto frontier than state-of-the-art algorithms, and with guaranteed approximation ratios.
用最小校正子集精确近似地确定帕累托集
近年来,布尔公式的最小修正子集(MCS)枚举使得求解多目标布尔优化(MOBO)公式成为可能。然而,这种方法的一个主要缺点是大多数mcs不对应于帕累托最优解。事实上,只有当所有的MCS都被枚举时,我们才能知道给定的MCS对应于一个帕累托最优解。此外,如果不可能列举出所有的mcs,那么就不能保证帕累托边界近似的质量。本文扩展了使用mcs解决MOBO的技术状态。首先,我们证明了使用MCS枚举来解决MOBO问题是可能的,这样每个MCS必然对应于一个帕累托最优解。此外,我们还提出了两种新的算法,可以使用MCS枚举找到帕累托边界的(1 + {\varepsilon})-近似。几个基准集的实验结果表明,新提出的算法可以找到比最先进的算法更好的帕累托边界近似值,并且具有保证的近似值比率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信