(Non)-Parametric Regressions: Applications to Local Stochastic Volatility Models

P. Henry-Labordère
{"title":"(Non)-Parametric Regressions: Applications to Local Stochastic Volatility Models","authors":"P. Henry-Labordère","doi":"10.2139/ssrn.3374875","DOIUrl":null,"url":null,"abstract":"In this short paper, we review various (non)-parametric regression methods, mainly k-nearest neighbors, Nadaraya-Watson, LP(p)-estimators, spline regressor and random forest. They are then compared when calibrating local stochastic volatility models using the particle method.","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":"111 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3374875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this short paper, we review various (non)-parametric regression methods, mainly k-nearest neighbors, Nadaraya-Watson, LP(p)-estimators, spline regressor and random forest. They are then compared when calibrating local stochastic volatility models using the particle method.
(非)参数回归:局部随机波动模型的应用
在这篇简短的文章中,我们回顾了各种(非)参数回归方法,主要是k近邻,Nadaraya-Watson, LP(p)-估计,样条回归和随机森林。然后在使用粒子法校准局部随机波动模型时对它们进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信