On enumerators of Smirnov words by descents and cyclic descents

IF 0.4 Q4 MATHEMATICS, APPLIED
Brittney Ellzey, M. Wachs
{"title":"On enumerators of Smirnov words by descents and cyclic descents","authors":"Brittney Ellzey, M. Wachs","doi":"10.4310/joc.2020.v11.n3.a1","DOIUrl":null,"url":null,"abstract":"A Smirnov word is a word over the positive integers in which adjacent letters must be different. A symmetric function enumerating these words by descent number arose in the work of Shareshian and the second named author on $q$-Eulerian polynomials, where a $t$-analog of a formula of Carlitz, Scoville, and Vaughan for enumerating Smirnov words is proved. A symmetric function enumerating a circular version of these words by cyclic descent number arose in the work of the first named author on chromatic quasisymmetric functions of directed graphs, where a $t$-analog of a formula of Stanley for enumerating circular Smirnov words is proved. \nIn this paper we obtain new $t$-analogs of the Carlitz-Scoville-Vaughan formula and the Stanley formula in which the roles of descent number and cyclic descent number are switched. These formulas show that the Smirnov word enumerators are polynomials in $t$ whose coefficients are e-positive symmetric functions. We also obtain expansions in the power sum basis and the fundamental quasisymmetric function basis, complementing earlier results of Shareshian and the authors. \nOur work relies on studying refinements of the Smirnov word enumerators that count certain restricted classes of Smirnov words by descent number. Applications to variations of $q$-Eulerian polynomials and to the chromatic quasisymmetric functions introduced by Shareshian and the second named author are also presented.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"17 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2020.v11.n3.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

A Smirnov word is a word over the positive integers in which adjacent letters must be different. A symmetric function enumerating these words by descent number arose in the work of Shareshian and the second named author on $q$-Eulerian polynomials, where a $t$-analog of a formula of Carlitz, Scoville, and Vaughan for enumerating Smirnov words is proved. A symmetric function enumerating a circular version of these words by cyclic descent number arose in the work of the first named author on chromatic quasisymmetric functions of directed graphs, where a $t$-analog of a formula of Stanley for enumerating circular Smirnov words is proved. In this paper we obtain new $t$-analogs of the Carlitz-Scoville-Vaughan formula and the Stanley formula in which the roles of descent number and cyclic descent number are switched. These formulas show that the Smirnov word enumerators are polynomials in $t$ whose coefficients are e-positive symmetric functions. We also obtain expansions in the power sum basis and the fundamental quasisymmetric function basis, complementing earlier results of Shareshian and the authors. Our work relies on studying refinements of the Smirnov word enumerators that count certain restricted classes of Smirnov words by descent number. Applications to variations of $q$-Eulerian polynomials and to the chromatic quasisymmetric functions introduced by Shareshian and the second named author are also presented.
Smirnov词的下降计数和循环下降计数
一个斯米尔诺夫词是一个在正整数上的词,其中相邻的字母必须不同。在Shareshian和第二位作者关于q -欧拉多项式的工作中,出现了一个对称函数,通过下降数来枚举这些词,其中证明了Carlitz, Scoville和Vaughan用于枚举Smirnov词的公式的t -类比。在第一作者关于有向图的色拟对称函数的工作中,提出了一个用循环下降数枚举这些词的圆形式的对称函数,证明了Stanley关于枚举圆形Smirnov词的公式的$t$类比。本文得到了Carlitz-Scoville-Vaughan公式和Stanley公式的新的$t$类比,其中下降数和循环下降数的作用被交换。这些公式表明Smirnov词枚举数是$t$中的多项式,其系数为e正对称函数。我们还得到了幂和基和基本拟对称函数基的展开式,补充了Shareshian和作者先前的结果。我们的工作依赖于研究斯米尔诺夫词枚举器的改进,该枚举器通过下降数来计数某些受限制的斯米尔诺夫词类。本文还介绍了该方法在q -欧拉多项式的变分和Shareshian等人引入的色拟对称函数中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信