Geodesic Growth of Numbered Graph Products

IF 0.1 Q4 MATHEMATICS
Lindsay Marjanski, Vincent Solon, Frank Zheng, Kathleen Zopff
{"title":"Geodesic Growth of Numbered Graph Products","authors":"Lindsay Marjanski, Vincent Solon, Frank Zheng, Kathleen Zopff","doi":"10.46298/jgcc.2023.14.2.10019","DOIUrl":null,"url":null,"abstract":"In this paper, we study geodesic growth of numbered graph products; these are\na generalization of right-angled Coxeter groups, defined as graph products of\nfinite cyclic groups. We first define a graph-theoretic condition called\nlink-regularity, as well as a natural equivalence amongst link-regular numbered\ngraphs, and show that numbered graph products associated to link-regular\nnumbered graphs must have the same geodesic growth series. Next, we derive a\nformula for the geodesic growth of right-angled Coxeter groups associated to\nlink-regular graphs. Finally, we find a system of equations that can be used to\nsolve for the geodesic growth of numbered graph products corresponding to\nlink-regular numbered graphs that contain no triangles and have constant vertex\nnumbering.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"72 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jgcc.2023.14.2.10019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study geodesic growth of numbered graph products; these are a generalization of right-angled Coxeter groups, defined as graph products of finite cyclic groups. We first define a graph-theoretic condition called link-regularity, as well as a natural equivalence amongst link-regular numbered graphs, and show that numbered graph products associated to link-regular numbered graphs must have the same geodesic growth series. Next, we derive a formula for the geodesic growth of right-angled Coxeter groups associated to link-regular graphs. Finally, we find a system of equations that can be used to solve for the geodesic growth of numbered graph products corresponding to link-regular numbered graphs that contain no triangles and have constant vertex numbering.
编号图积的测地线生长
本文研究了带编号图积的测地线生长;这些直角Coxeter群的面积推广,定义为无限循环群的图积。我们首先定义了一个图论条件——链接正则性,以及链接正则编号图之间的自然等价,并证明了链接正则编号图的编号图积必须具有相同的测地线生长级数。其次,我们导出了与链正则图相关的直角Coxeter群的测地线生长公式。最后,我们找到了一个可用于求解不包含三角形且具有恒定顶点编号的链接正则编号图对应的带编号图积的测地线生长的方程组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信