{"title":"Urban street scene analysis using lightweight multi-level multi-path feature aggregation network","authors":"Tanmay Singha, Duc-Son Pham, A. Krishna","doi":"10.3233/mgs-210353","DOIUrl":null,"url":null,"abstract":"Urban street scene analysis is an important problem in computer vision with many off-line models achieving outstanding semantic segmentation results. However, it is an ongoing challenge for the research community to develop and optimize the deep neural architecture with real-time low computing requirements whilst maintaining good performance. Balancing between model complexity and performance has been a major hurdle with many models dropping too much accuracy for a slight reduction in model size and unable to handle high-resolution input images. The study aims to address this issue with a novel model, named M2FANet, that provides a much better balance between model’s efficiency and accuracy for scene segmentation than other alternatives. The proposed optimised backbone helps to increase model’s efficiency whereas, suggested Multi-level Multi-path (M2) feature aggregation approach enhances model’s performance in the real-time environment. By exploiting multi-feature scaling technique, M2FANet produces state-of-the-art results in resource-constrained situations by handling full input resolution. On the Cityscapes benchmark data set, the proposed model produces 68.5% and 68.3% class accuracy on validation and test sets respectively, whilst having only 1.3 million parameters. Compared with all real-time models of less than 5 million parameters, the proposed model is the most competitive in both performance and real-time capability.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiagent and Grid Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mgs-210353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2
Abstract
Urban street scene analysis is an important problem in computer vision with many off-line models achieving outstanding semantic segmentation results. However, it is an ongoing challenge for the research community to develop and optimize the deep neural architecture with real-time low computing requirements whilst maintaining good performance. Balancing between model complexity and performance has been a major hurdle with many models dropping too much accuracy for a slight reduction in model size and unable to handle high-resolution input images. The study aims to address this issue with a novel model, named M2FANet, that provides a much better balance between model’s efficiency and accuracy for scene segmentation than other alternatives. The proposed optimised backbone helps to increase model’s efficiency whereas, suggested Multi-level Multi-path (M2) feature aggregation approach enhances model’s performance in the real-time environment. By exploiting multi-feature scaling technique, M2FANet produces state-of-the-art results in resource-constrained situations by handling full input resolution. On the Cityscapes benchmark data set, the proposed model produces 68.5% and 68.3% class accuracy on validation and test sets respectively, whilst having only 1.3 million parameters. Compared with all real-time models of less than 5 million parameters, the proposed model is the most competitive in both performance and real-time capability.